Long residues (424°C +) from Athabasca, Cold Lake, Lloydminster, and Peace River were hydrocracked over a commercial NilMo on y‐alumina catalyst at 430°C, 13.9 MPa (2000 psia). The conversion of residue fraction ranged from 55 to 68%, and was correlated with the concentration of carbon bound to aromatic rings in the feeds. Conversions of sulfur, Micro‐Carbon Residue, and metals were all highest for Peace River feed, following the same ranking as residue conversion. Estimates for the breakage of carbon‐carbon bonds and the uptake of hydrogen were diagnostic in interpreting the reactor performance.
A group of 25 agencies from Canada and the United States conducted a major offshore burn experiment near Newfoundland, Canada. Two lots of oil, about 50 cubic meters (50 tons) each, were released into a fireproof boom. Each burn lasted over an hour and was monitored for emissions and physical parameters. Over 200 sensors or samplers were employed to yield data on over 2000 parameters or substances. The operation was extensive; more than 20 vessels, 7 aircraft and 230 people were involved in the operation at sea.
The quantitative analytical data show that the emissions from this in-situ oil fire were less than expected. All compounds and parameters measured more than about 150 meters from the fire were below occupational health exposure levels; very little was detected beyond 500 meters. Pollutants were found to be at lower values in the Newfoundland offshore burn than they were in previous pan tests.
Polyaromatic hydrocarbons (PAHs) were found to be lower in the soot than in the starting oil and were consumed by the fire to a large degree. Particulates in the air were measured by several means and found to be of concern only up to 150 meters downwind at sea level. Combustion gases including carbon dioxide, sulphur dioxide, and carbon monoxide did not reach levels of concern. Volatile organic compounds (VOCs) were abundant, however their concentrations were less than emitted from the nonburning spill. Over 50 compounds were quantified, several at levels of concern up to 150 meters downwind. Water under the burns was analyzed; no compounds of concern could be found at the detection level of the methods employed. Toxicity tests performed on this water did not show any adverse effect. The burn residue was analyzed for the same compounds as the air samples. Overall, indications from these burn trials are that 150 meters or farther from the burn source emissions from in-situ burning are lower than health criteria levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.