HighlightsPCR and genomeresolved metagenomics revealed Lak phages in 13 animal species Lak is abundant in the pig hindgut, with potential relevance to growth performance Thirty-four new Lak phage genomes present expanded size range and phylogeny Unique Lak protein families from specific microbiomes suggest animal host adaptation
Chitinases are important enzymes that contribute to the generation of carbon and nitrogen from chitin, a long chain polymer of N-acetylglucosamine that is abundant in insects, fungi, invertebrates and fish. Although mammals do not produce chitin, chitinases have been identified in bacteria that are key virulence factors in severe respiratory, gastrointestinal and urinary diseases. However, it is unclear how these enzymes are able to carry out this dual function. Legionella pneumophila is the causative agent of Legionnaires' disease, an oftenfatal pneumonia and its chitinase ChiA is essential for the survival of L. pneumophila in the lung. Here we report the first atomic resolution insight into the pathogenic mechanism of a bacterial chitinase. We derive an experimental model of intact ChiA and show how its N-terminal region targets ChiA to the bacterial surface after its secretion. We provide the first evidence that L. pneumophila can bind mucins on its surface, but this is not dependent on ChiA. This demonstrates that additional peripheral mucin binding proteins are also expressed in L. pneumophila. We also show that the ChiA C-terminal chitinase domain has novel Zn 2+-dependent peptidase activity against mammalian mucin-like proteins, namely MUC5AC and the C1-esterase inhibitor, and that ChiA promotes bacterial penetration of mucin gels. Our findings suggest that ChiA can facilitate passage of L. pneumophila through the alveolar mucosa, can modulate the host complement system and that ChiA may be a promising target for vaccine development.
Rhizobium sp. str. NT‐26 is a Gram‐negative facultative chemolithoautotrophic arsenite oxidizer that has been used as a model organism to study various aspects of arsenite oxidation including the regulation of arsenite oxidation. The three regulatory genes, aioX, aioS, and aioR, are cotranscribed when NT‐26 was grown in the presence or absence of arsenite. The aioXSR operon is upregulated in stationary phase but not by the presence of arsenite in the growth medium. The two transcription start sites upstream of aioX were determined which led to the identification of two promoters, the housekeeping promoter RpoD and the growth‐phase‐dependent promoter RpoE2. Promoter–lacZ fusions confirmed their constitutive and stationary phase expressions. The involvement of the NT‐26 sigma factor RpoE2 in acting on the NT‐26 RpoE2 promoter was confirmed in vivo in Escherichia coli, which lacks a rpoE2 homolog, using a strain carrying both the promoter–lacZ fusion and the NT‐26 rpoE2 gene. An in silico approach was used to search for other RpoE2 promoters and AioR‐binding motifs and led to the identification of other genes that could be regulated by these proteins including those involved in quorum sensing, chemotaxis, and motility expanding the signaling networks important for the microbial metabolism of arsenite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.