Abstract. Alport syndrome (AS) is a type IV collagen hereditary disease characterized by progressive hematuric nephritis, hearing loss, and ocular changes. Mutations in the COL4A5 collagen gene are responsible for the more common X-linked dominant form of the disease characterized by much less severe disease in girls and women. A "European Community Alport Syndrome Concerted Action" (ECASCA) group was established to delineate the Alport syndrome phenotype in each gender and to determine genotype-phenotype correlations in a large number of families. Data concerning 329 families, 250 of them with an X-linked transmission, were collected. Characteristics of heterozygous girls and women belonging to the 195 families with proven COL4A5 mutation are compared with those of hemizygous boys and men. Hematuria was observed in 95% of carriers and consistently absent in the others. Proteinuria, hearing loss, and ocular defects developed in 75%, 28%, and 15%, respectively. The probability of developing end-stage renal disease or deafness before the age of 40 yr was 12% and 10%, respectively, in girls and women versus 90 and 80%, respectively, in boys and men. The risk of progression to end-stage renal disease appears to increase after the age of 60 yr in women. Because of the absence of genotype-phenotype correlation and the large intrafamilial phenotypic heterogeneity, early prognosis of the disease in X-linked Alport syndrome carriers remains moot. Risk factors for developing renal failure have been identified: the occurrence and progressive increase in proteinuria, and the development of a hearing defect.
Congenital nephrotic syndrome, Finnish type (CNF or NPHS1), is an autosomal recessive disease characterized by massive proteinuria and development of nephrotic syndrome shortly after birth. The disease is most common in Finland, but many patients have been identified in other populations. The disease is caused by mutations in the gene for nephrin which is a key component of the glomerual ultrafilter, the podocyte slit diaphragm. A total of 30 mutations have been reported in the nephrin gene in patients with congenital nephrotic syndrome worldwide. In the Finnish population, two main mutations have been found. These two nonsense mutations account for over 94% of all mutations in Finland. Most mutations found in non-Finnish patients are missense mutations, but they include also nonsense and splice site mutations, as well as deletions and insertions. This mutation update summarizes the nature of all previously reported nephrin mutations and, additionally, describes 20 novel mutations recently identified in our laboratory.
Abstract. Alport syndrome (AS) is a type IV collagen hereditary disease characterized by the association of progressive hematuric nephritis, hearing loss, and, frequently, ocular changes. Mutations in the COL4A5 collagen gene are responsible for the more common X-linked dominant form of the disease. Considerable allelic heterogeneity has been observed. A “European Community Alport Syndrome Concerted Action” has been established to delineate accurately the AS phenotype and to determine genotype-phenotype correlations in a large number of families. Data concerning 329 families, 250 of them with an X-linked transmission, were collected. Characteristics of the 401 male patients belonging to the 195 families with COL4A5 mutation are presented. All male patients were hematuric, and the rate of progression to end-stage renal failure and deafness was mutation-dependent. Large deletions, nonsense mutations, or small mutations changing the reading frame conferred to affected male patients a 90% probability of developing end-stage renal failure before 30 yr of age, whereas the same risk was of 50 and 70%, respectively, in patients with missense or splice site mutation. The risk of developing hearing loss before 30 yr of age was approximately 60% in patients with missense mutations, contrary to 90% for the other types of mutations. The natural history of X-linked AS and correlations with COL4A5 mutations have been established in a large cohort of male patients. These data could be used for further evaluation of therapeutic approaches.
Both transmembrane and extracellular cues, one of which is collagen XIII, regulate the formation and function of the neuromuscular synapse, and their absence results in myasthenia. We show that the phenotypical changes in collagen XIII knock-out mice are milder than symptoms in human patients, but the Col13a1-/- mice recapitulate major muscle findings of congenital myasthenic syndrome type 19 and serve as a disease model. In the lack of collagen XIII neuromuscular synapses do not reach full size, alignment, complexity and function resulting in reduced muscle strength. Collagen XIII is particularly important for the preterminal integrity, and when absent, destabilization of the motor nerves results in muscle regeneration and in atrophy especially in the case of slow muscle fibers. Collagen XIII was found to affect synaptic integrity through binding the ColQ tail of acetylcholine esterase. Although collagen XIII is a muscle-bound transmembrane molecule, it also undergoes ectodomain shedding to become a synaptic basal lamina component. We investigated the two forms' roles by novel Col13a1tm/tm mice in which ectodomain shedding is impaired. While postsynaptic maturation, terminal branching and neurotransmission was exaggerated in the Col13a1tm/tm mice, the transmembrane form's presence sufficed to prevent defects in transsynaptic adhesion, Schwann cell invagination/retraction, vesicle accumulation and acetylcholine receptor clustering and acetylcholinesterase dispersion seen in the Col13a1-/- mice, pointing to the transmembrane form as the major conductor of collagen XIII effects. Altogether, collagen XIII secures postsynaptic, synaptic and presynaptic integrity, and it is required for gaining and maintaining normal size, complexity and functional capacity of the neuromuscular synapse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.