Nitric oxide (NO) is emerging as an important regulatory player in the Rhizobium-legume symbiosis, but its biological role in nodule functioning is still far from being understood. To unravel the signal transduction cascade and ultimately NO function, it is necessary to identify its molecular targets. This study provides evidence that glutamine synthetase (GS), a key enzyme for root nodule metabolism, is a molecular target of NO in root nodules of Medicago truncatula, being regulated by tyrosine (Tyr) nitration in relation to active nitrogen fixation. In vitro studies, using purified recombinant enzymes produced in Escherichia coli, demonstrated that the M. truncatula nodule GS isoenzyme (MtGS1a) is subjected to NO-mediated inactivation through Tyr nitration and identified Tyr-167 as the regulatory nitration site crucial for enzyme inactivation. Using a sandwich enzymelinked immunosorbent assay, it is shown that GS is nitrated in planta and that its nitration status changes in relation to active nitrogen fixation. In ineffective nodules and in nodules fed with nitrate, two conditions in which nitrogen fixation is impaired and GS activity is reduced, a significant increase in nodule GS nitration levels was observed. Furthermore, treatment of root nodules with the NO donor sodium nitroprusside resulted in increased in vivo GS nitration accompanied by a reduction in GS activity. Our results support a role of NO in the regulation of nitrogen metabolism in root nodules and places GS as an important player in the process. We propose that the NO-mediated GS posttranslational inactivation is related to metabolite channeling to boost the nodule antioxidant defenses in response to NO.
It was reported recently that the plastid-located glutamine synthetase (GS2) from Medicago truncatula is regulated by phosphorylation catalysed by a calcium-dependent protein kinase and 14-3-3 interaction. Here it is shown that the two cytosolic GS isoenzymes, GS1a and GS1b, are also regulated by phosphorylation but, in contrast to GS2, GS1 phosphorylation is catalysed by calcium-independent kinase(s) and the phosphorylated enzymes fail to interact with 14-3-3s. Phosphorylation of GS1a occurs at more than one residue and was found to increase the affinity of the enzyme for the substrate glutamate. In vitro phosphorylation assays were used to compare the activity of GS kinase, present in different plant organs, against the three M. truncatula GS isoenzymes. All three GS proteins were phosphorylated by kinases present in leaves, roots, and nodules, but to different extents, suggesting a differential regulation under different metabolic contexts. Cytosolic GS phosphorylation was found to be affected by light in leaves and by active nitrogen fixation in root nodules, whereas GS2 phosphorylation was unaffected by these conditions. Some putative GS-binding phosphoproteins were identified showing both isoenzyme and organ specificity. Two phosphoproteins of 70 and 72 kDa were specifically bound to the cytosolic GS isoenzymes. Interestingly, phosphorylation of these proteins was also influenced by the nitrogen-fixing status of the nodule, suggesting that their phosphorylation and/or binding to GS are related to nitrogen fixation. Taken together, the results presented indicate that GS phosphorylation is modulated by nitrogen fixation in root nodules; these findings open up new possibilities to explore the involvement of this post-translational mechanism in nodule functioning.
In this report we demonstrate that plastid glutamine synthetase of Medicago truncatula (MtGS2) is regulated by phosphorylation and 14-3-3 interaction. To investigate regulatory aspects of GS2 phosphorylation, we have produced non-phosphorylated GS2 proteins by expressing the plant cDNA in E. coli and performed in vitro phosphorylation assays. The recombinant isoenzyme was phosphorylated by calcium dependent kinase(s) present in leaves, roots and nodules. Using an (His)6-tagged 14-3-3 protein column affinity purification method, we demonstrate that phosphorylated GS2 interacts with 14-3-3 proteins and that this interaction leads to selective proteolysis of the plastid located isoform, resulting in inactivation of the isoenzyme. By site directed mutagenesis we were able to identify a GS2 phosphorylation site (Ser97) crucial for the interaction with 14-3-3s. Phosphorylation of this target residue can be functionally mimicked by replacing Ser97 by Asp, indicating that the introduction of a negative charge contributes to the interaction with 14-3-3 proteins and subsequent specific proteolysis. Furthermore, we document that plant extracts contain protease activity that cleaves the GS2 protein only when it is bound to 14-3-3 proteins following either phosphorylation or mimicking of phosphorylation by Ser97Asp.
Transgenic Medicago truncatula plants were produced harboring chimeric gene constructs of the glutamine synthetase (GS) cDNA clones (MtGS1a or MtGS1b) fused in sense or antisense orientation to the nodule-specific leghemoglobin promoter Mtlb1. A series of transgenic plants were obtained showing a 2-to 4-fold alteration in nodule GS activity when compared with control plants. Western and northern analyses revealed that the increased or decreased levels of GS activity correlate with the amount of cytosolic GS polypeptides and transcripts present in the nodule extracts. An analysis of the isoenzyme composition showed that the increased or decreased levels of GS activity were attributable to major changes in the homo-octameric isoenzyme GS1a. Nodules of plants transformed with antisense GS constructs showed an increase in the levels of both asparagine synthetase (AS) polypeptides and transcripts when compared with untransformed control plants, whereas the sense GS transformants showed decreased AS transcript levels but polypeptide levels similar to control plants. The polypeptide abundance of other nitrogen metabolic enzymes NADH-glutamic acid synthase and aspartic acid aminotransferase as well as those of major carbon metabolic enzymes phosphoenolpyruvate carboxylase, carbonic anhydrase, and sucrose synthase were not affected by the GS-gene manipulations. Increased levels of AS polypeptides and transcripts were also transiently observed in nodules by inhibiting GS activity with phosphinothricin. Taken together, the results presented here suggest that GS activity negatively regulates the level of AS in root nodules of M. truncatula. The potential role of AS in assimilating ammonium when GS becomes limiting is discussed.Nitrogen is the major nutrient limiting plant growth and crop yield, and thus many studies have been devoted to the mechanisms by which it is taken up and used by plants. Legumes obtain a significant fraction of their nitrogen from atmospheric N 2 through symbiotic association with nitrogen fixing bacteria, termed rhizobia. The ammonium produced by nitrogen fixation is mainly released from the rhizobial bacteroids into the infected cells of the root nodules where it is assimilated into the organic pools by plant Gln synthetase (GS; EC 6.3.1.2). GS in conjunction with NADH-Glu synthase (NADH-GOGAT, EC 1.4.1.14) operates the Glu synthase cycle leading to the synthesis of Gln and Glu, which then serve as nitrogen donors for the biosynthesis of essentially all nitrogenous compounds. In temperate legumes, fixed nitrogen is exported from the nodules to the rest of the plant mainly as Asn, which is synthesized by the concerted action of two additional enzymes, Asp aminotransferase (AAT, EC 2.6.1.1) and Asn synthetase (AS; EC 6.3.5.4). The overall pathway of ammonium assimilation to Asn in nodules requires oxaloacetate as carbon skeleton, which is produced by metabolism of photosynthate (involving a noduleenhanced Suc synthase [SUCS]) in conjunction with nodule CO 2 fixation via the enzymes carbonic anhydrase...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.