We and others have previously described signatures of tolerance in kidney transplantation showing the differential expression of B cell–related genes and the relative expansions of B cell subsets. However, in all of these studies, the index group—namely, the tolerant recipients—were not receiving immunosuppression (IS) treatment, unlike the rest of the comparator groups. We aimed to assess the confounding effect of these regimens and develop a novel IS‐independent signature of tolerance. Analyzing gene expression in three independent kidney transplant patient cohorts (232 recipients and 14 tolerant patients), we have established that the expression of the previously reported signature was biased by IS regimens, which also influenced transitional B cells. We have defined and validated a new gene expression signature that is independent of drug effects and also differentiates tolerant patients from healthy controls (cross‐validated area under the receiver operating characteristic curve [AUC] = 0.81). In a prospective cohort, we have demonstrated that the new signature remained stable before and after steroid withdrawal. In addition, we report on a validated and highly accurate gene expression signature that can be reliably used to identify patients suitable for IS reduction (approximately 12% of stable patients), irrespective of the IS drugs they are receiving. Only a similar approach will make the conduct of pilot clinical trials for IS minimization safe and hence allow critical improvements in kidney posttransplant management.
Background-An increased percentage of peripheral transitional B-cells producing IL-10 has been observed in patients tolerant to kidney allografts. In healthy volunteers, the balance between the CD40 and B-cell receptor (BCR) signalling modulated IL-10 production by B-cells, with stimulation via the BCR decreasing CD40-mediated-IL-10 production. In this study, we evaluate whether in tolerant kidney transplant patients the increased IL-10 production by B-cells was due to an altered CD40 and/or BCR signalling.
Background Acute T-cell mediated rejection (TCMR) is usually indicated by alteration in serum-creatinine measurements when considerable transplant damage has already occurred. There is, therefore, a need for non-invasive early detection of immune signals that would precede the onset of rejection, prior to transplant damage. Methods We examined the RT-qPCR expression of 22 literature-based genes in peripheral blood samples from 248 patients in the Kidney Allograft Immune Biomarkers of Rejection Episodes (KALIBRE) study. To account for post-transplantation changes unrelated to rejection, we generated time-adjusted gene-expression residuals from linear mixed-effects models in stable patients. To select genes, we used penalised logistic regression based on 27 stable patients and 27 rejectors with biopsy-proven T-cell-mediated rejection, fulfilling strict inclusion/exclusion criteria. We validated this signature in i) an independent group of stable patients and patients with concomitant T-cell and antibody-mediated-rejection, ii) patients from an independent study, iii) cross-sectional pre-biopsy samples from non-rejectors and iv) longitudinal follow-up samples covering the first post-transplant year from rejectors, non-rejectors and stable patients. Findings A parsimonious TCMR-signature ( IFNG, IP-10, ITGA4, MARCH8, RORc, SEMA7A, WDR40A ) showed cross-validated area-under-ROC curve 0.84 (0.77–0.88) (median, 2.5 th –97.5 th centile of fifty cross-validation cycles), sensitivity 0.67 (0.59–0.74) and specificity 0.85 (0.75–0.89). The estimated probability of TCMR increased seven weeks prior to the diagnostic biopsy and decreased after treatment. Gene expression in all patients showed pronounced variability, with up to 24% of the longitudinal samples in stable patients being TCMR-signature positive. In patients with borderline changes, up to 40% of pre-biopsy samples were TCMR-signature positive. Interpretation Molecular marker alterations in blood emerge well ahead of the time of clinically overt TCMR. Monitoring a TCMR-signature in peripheral blood could unravel T-cell-related pro-inflammatory activity and hidden immunological processes. This additional information could support clinical management decisions in cases of patients with stable but poor kidney function or with inconclusive biopsy results.
Background Kidney transplant recipients (KTRs) with “operational tolerance” (OT) maintain a functioning graft without immunosuppressive (IS) drugs, thus avoiding treatment complications. Nevertheless, IS drugs can influence gene-expression signatures aiming to identify OT among treated KTRs. Methods We compared five published signatures of OT in peripheral blood samples from 18 tolerant, 183 stable, and 34 chronic rejector KTRs, using gene-expression levels with and without adjustment for IS drugs and regularised logistic regression. Findings IS drugs explained up to 50% of the variability in gene-expression and 20–30% of the variability in the probability of OT predicted by signatures without drug adjustment. We present a parsimonious consensus gene-set to identify OT, derived from joint analysis of IS-drug-adjusted expression of five published signature gene-sets. This signature, including CD40, CTLA4, HSD11B1, IGKV4–1, MZB1, NR3C2, and RAB40C genes, showed an area under the curve 0⋅92 (95% confidence interval 0⋅88–0⋅94) in cross-validation and 0⋅97 (0⋅93–1⋅00) in six months follow-up samples. Interpretation We advocate including adjustment for IS drug therapy in the development stage of gene-expression signatures of OT to reduce the risk of capturing features of treatment, which could be lost following IS drug minimisation or withdrawal. Our signature, however, would require further validation in an independent dataset and a biomarker-led trial. Funding FP7-HEALTH-2012-INNOVATION-1 [305147:BIO-DrIM] (SC,IR-M,PM,DSt); MRC [G0801537/ID:88245] (MPH-F); MRC [MR/J006742/1] (IR-M); Guy's&StThomas’ Charity [R080530]&[R090782]; CONICYT-Bicentennial-Becas-Chile (EN-L); EU:FP7/2007–2013 [HEALTH-F5–2010–260687: The ONE Study] (MPH-F); Czech Ministry of Health [NV19–06–00031] (OV); NIHR-BRC Guy's&StThomas' NHS Foundation Trust and KCL (SC); UK Clinical Research Networks [portfolio:7521].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.