The stable isotopic composition of two rivers, the Vantaanjoki River and the Kokemäenjoki River, in southern and southwestern Finland was studied to resolve the transit times and travel routes of the river water in the two different catchments. The Kokemäenjoki River is dominated by great lake basins whereas the Vantaanjoki River has been reported having a significant groundwater component. The mean residence time of the young surface flow component could be resolved by sine function fitting onto the annual fluctuations of the isotopic signal, and the amount of base flow was estimated by using the isotopic composition of the river and groundwater. In this study, we found that the methods work for simple two component catchments. In more complex cases with three different components mixing, the solution becomes increasingly difficult and requires more study.
Studying the carbon balance in surface waters gives information on the annual cycles of photosynthesis and respiration. It also provides insight on the water body's capability to serve as a source or sink for atmospheric CO2, which may be essential in evaluating the effects of climate change. The target of this study was the Vantaanjoki River known to have a significant base flow component, located in a densely populated area in southern Finland. The aims of this study were firstly to study if human induced changes are evident in the inorganic carbon quality of the river, and secondly to determine whether the river releases carbon to the atmosphere. These aims were achieved by studying the isotopic composition and contents of dissolved inorganic carbon (DIC) in relation to river discharge. It was evident from the results that the human activities only have mild local and temporal effects on the quality of the DIC in the river. The most important contributors to the changes in the carbon balance are the annual changes in the proportion of the base flow and surface flow components and the escape of CO2 to the atmosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.