The process of sorption enhanced steam methane reforming (SE-SMR) is an emerging technology for the production of low carbon hydrogen. The development of a suitable catalytic material, as well as a CO 2 adsorbent with high capture capacity, has slowed the upscaling of this process to date. In this study, to aid the development of a combined sorbent catalyst material (CSCM) for SE-SMR, a novel approach involving quantitative structure−property relationship analysis (QSPR) has been proposed. Through data-mining, two databases have been developed for the prediction of the last cycle capacity (g CO 2 /g sorbent ) and methane conversion (%). Multitask learning (MTL) was applied for the prediction of CSCM properties. Patterns in the data of this study have also yielded further insights; colored scatter plots were able to show certain patterns in the input data, as well as suggestions on how to develop an optimal material. With the results from the actual vs predicted plots collated, raw materials and synthesis conditions were proposed that could lead to the development of a CSCM that has good performance with respect to both the last cycle capacity and the methane conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.