We used fluorescence microscopy of FM dyes-labeled synaptic vesicles and electrophysiological recordings to examine the functional characteristics of vesicle recycling and study how different types of voltage-dependent Ca(2+) channels (VDCCs) regulate the coupling of exocytosis and endocytosis at mouse neuromuscular junction. Our results demonstrate the presence of at least two different pools of recycling vesicles: a high-probability release pool (i.e. a fast destaining vesicle pool), which is preferentially loaded during the first 5 s (250 action potentials) at 50 Hz; and a low-probability release pool (i.e. a slow destaining vesicle pool), which is loaded during prolonged stimulation and keeps on refilling after end of stimulation. Our results suggest that a fast recycling pool mediates neurotransmitter release when vesicle use is minimal (i.e. during brief high-frequency stimulation), while vesicle mobilization from a reserve pool is the prevailing mechanism when the level of synaptic activity increases. We observed that specific N- and L-type VDCC blockers had no effect on evoked transmitter release upon low-frequency stimulation (5 Hz). However, at high-frequency stimulation (50 Hz), L-type Ca(2+) channel blocker increased FM2-10 destaining and at the same time diminished quantal release. Furthermore, when L-type channels were blocked, FM2-10 loading during stimulation was diminished, while the amount of endocytosis after stimulation was increased. Our experiments suggest that L-type VDCCs promote endocytosis of synaptic vesicles, directing the newly formed vesicles to a high-probability release pool where they compete against unused vesicles.
Leptin regulates hypothalamic POMC+ (pro-opiomelanocortin) neurons by inducing TRPC (Transient Receptor Potential Cation) channel-mediate membrane depolarization. The role of TRPC channels in POMC neuron excitability is clearly established; however, it remains unknown whether their activity alone is sufficient to trigger excitability. Here we show that the right-shift voltage induced by the leptin-induced TRPC channel-mediated depolarization of the resting membrane potential brings T-type channels into the active window current range, resulting in an increase of the steady state T-type calcium current from 40 to 70% resulting in increased intrinsic excitability of POMC neurons. We assessed the role and timing of T-type channels on excitability and leptin-induced depolarization in vitro in cultured mouse POMC neurons. The involvement of TRPC channels in the leptin-induced excitability of POMC neurons was corroborated by using the TRPC channel inhibitor 2APB, which precluded the effect of leptin. We demonstrate T-type currents are indispensable for both processes, as treatment with NNC-55-0396 prevented the membrane depolarization and rheobase changes induced by leptin. Furthermore, co-immunoprecipitation experiments suggest that TRPC1/5 channels and CaV3.1 and CaV3.2 channels co-exist in complex. The functional relevance of this complex was corroborated using intracellular Ca2+ chelators; intracellular BAPTA (but not EGTA) application was sufficient to preclude POMC neuron excitability. However, leptin-induced depolarization still occurred in the presence of either BAPTA or EGTA suggesting that the calcium entry necessary to self-activate the TRPC1/5 complex is not blocked by the presence of BAPTA in hypothalamic neurons. Our study establishes T-type channels as integral part of the signaling cascade induced by leptin, modulating POMC neuron excitability. Leptin activation of TRPC channels existing in a macromolecular complex with T-type channels recruits the latter by locally induced membrane depolarization, further depolarizing POMC neurons, triggering action potentials and excitability.
Leptin regulates hypothalamic POMC+ (pro-opiomelanocortin) neurons by inducing TRPC (Transient Receptor Potential Cation) channel-mediate membrane depolarization. Here we assessed the role of T-type channels on POMC neuron excitability and leptin-induced depolarization in vitro. We demonstrate T-type currents are indispensable for both processes, as treatment with NNC-55-0396 prevented the membrane depolarization and rheobase changes induced by leptin in cultured mouse POMC neurons. Furthermore, we demonstrate TRPC1/C5 channels and CaV3.1 and CaV3.2 channels co-exist in complex. The functional relevance of this complex was corroborated using intracellular Ca2+ chelators; intracellular BAPTA (but not EGTA) application was sufficient to preclude POMC neuron excitability by preventing leptin-induced calcium influx through TRPC channels and T-type channel function.We conclude T-type channels are integral in POMC neuron excitability. Leptin activation of TRPC channels existing in a macromolecular complex with T-type channels recruits the latter by locally-induced membrane depolarization, further depolarizing POMC neurons, triggering action potentials and excitability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.