Aim
Topographic complexity is widely accepted as a key driver of biodiversity, but at the patch‐scale, complexity–biodiversity relationships may vary spatially and temporally according to the environmental stressors complexity mitigates, and the species richness and identity of potential colonists. Using a manipulative experiment, we assessed spatial variation in patch‐scale effects of complexity on intertidal biodiversity.
Location
27 sites within 14 estuaries/bays distributed globally.
Time period
2015–2017.
Major taxa studied
Functional groups of algae, sessile and mobile invertebrates.
Methods
Concrete tiles of differing complexity (flat; 2.5‐cm or 5‐cm complex) were affixed at low–high intertidal elevation on coastal defence structures, and the richness and abundance of the colonizing taxa were quantified after 12 months.
Results
The patch‐scale effects of complexity varied spatially and among functional groups. Complexity had neutral to positive effects on total, invertebrate and algal taxa richness, and invertebrate abundances. However, effects on the abundance of algae ranged from positive to negative, depending on location and functional group. The tidal elevation at which tiles were placed accounted for some variation. The total and invertebrate richness were greater at low or mid than at high intertidal elevations. Latitude was also an important source of spatial variation, with the effects of complexity on total richness and mobile mollusc abundance greatest at lower latitudes, whilst the cover of sessile invertebrates and sessile molluscs responded most strongly to complexity at higher latitudes.
Conclusions
After 12 months, patch‐scale relationships between biodiversity and habitat complexity were not universally positive. Instead, the relationship varied among functional groups and according to local abiotic and biotic conditions. This result challenges the assumption that effects of complexity on biodiversity are universally positive. The variable effect of complexity has ramifications for community and applied ecology, including eco‐engineering and restoration that seek to bolster biodiversity through the addition of complexity.
Summary
Clove oil can be used as an anaesthetic in the handling of marine and freshwater fish. Few studies report on its use for periods up to 48 h, for example, under long‐distance transport conditions. This study tested the effect of different clove oil concentrations for 1–48 h on recovery and survival of the cichlid Haplochromis obliquidens, an ornamental fish species endemic to Lake Victoria. Haplochromis obliquidens were anaesthetized for 1 h using 5–25 μl L−1 clove oil. There was no correlation between clove oil concentration and post‐anaesthesia recovery time (P = 0.15). On average, fish recovered within 9.5 ± 2 min, and no fish died within 24 h after recovery. Results from exposure of fish to 18–20 μl L−1 clove oil for up to 48 h suggested a narrow margin of safety as this concentration range induced mortality. At 18 μl L−1 recovery times ranged from 3 to 43 min between 24 and 36 h exposure, while fish exposed longer than 36 h recovered within 1–10 min, or within 1–2 min after 44–48 h. At the end of a 48‐h transport experiment total ammonia levels were higher in transport water containing anaesthetized fish than for non‐anaesthetized fish (1.65 ± 0.19 and 0.54 ± 0.08 mg L−1 NH + NH3, respectively). The combined use of clove oil and the selective ammonium ion exchanger zeolite was considered feasible as ammonia levels could be reduced by up to 82% compared to control bags without zeolite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.