Since the advent of high-throughput screening (HTS), there has been an urgent need for methods that facilitate the interrogation of large-scale chemical biology data to build a mode of action (MoA) hypothesis. This can be done either prior to the HTS by subset design of compounds with known MoA or post HTS by data annotation and mining. To enable this process, we developed a tool that compares compounds solely on the basis of their bioactivity: the chemical biological descriptor "high-throughput screening fingerprint" (HTS-FP). In the current embodiment, data are aggregated from 195 biochemical and cell-based assays developed at Novartis and can be used to identify bioactivity relationships among the in-house collection comprising ~1.5 million compounds. We demonstrate the value of the HTS-FP for virtual screening and in particular scaffold hopping. HTS-FP outperforms state of the art methods in several aspects, retrieving bioactive compounds with remarkable chemical dissimilarity to a probe structure. We also apply HTS-FP for the design of screening subsets in HTS. Using retrospective data, we show that a biodiverse selection of plates performs significantly better than a chemically diverse selection of plates, both in terms of number of hits and diversity of chemotypes retrieved. This is also true in the case of hit expansion predictions using HTS-FP similarity. Sets of compounds clustered with HTS-FP are biologically meaningful, in the sense that these clusters enrich for genes and gene ontology (GO) terms, showing that compounds that are bioactively similar also tend to target proteins that operate together in the cell. HTS-FP are valuable not only because of their predictive power but mainly because they relate compounds solely on the basis of bioactivity, harnessing the accumulated knowledge of a high-throughput screening facility toward the understanding of how compounds interact with the proteome.
We suggest a simple method to assess how many normal modes are needed to map a conformational change. By projecting the conformational change onto a subspace of the normal-mode vectors and using root mean square deviation as a test of accuracy, we find that the first 20 modes only contribute 50% or less of the total conformational change in four test cases (myosin, calmodulin, NtrC, and hemoglobin). In some allosteric systems, like the molecular switch NtrC, the conformational change is localized to a limited number of residues. We find that many more modes are necessary to accurately map this collective displacement. In addition, the normal-mode "spectra" can provide useful information about the details of the conformational change, especially when comparing structures with different bound ligands, in this case, calmodulin. Indeed, this approach presents normal-mode analysis as a useful basis in which to capture the mechanism of conformational change, and shows that the number of normal modes needed to capture the essential collective motions of atoms should be chosen according to the required accuracy.
The ribosome is a large complex catalyst responsible for the synthesis of new proteins, an essential function for life. New proteins emerge from the ribosome through an exit tunnel as nascent polypeptide chains. Recent findings indicate that tunnel interactions with the nascent polypeptide chain might be relevant for the regulation of translation. However, the specific ribosomal structural features that mediate this process are unknown. Performing molecular dynamics simulations, we are studying the interactions between components of the ribosome exit tunnel and different chemical probes (specifically different amino acid side chains or monovalent inorganic ions). Our free-energy maps describe the physicochemical environment of the tunnel, revealing binding crevices and free-energy barriers for single amino acids and ions. Our simulations indicate that transport out of the tunnel could be different for diverse amino acid species. In addition, our results predict a notable protein-RNA interaction between a flexible 23S rRNA tetraloop (gate) and ribosomal protein L39 (latch) that could potentially obstruct the tunnel's exit. By relating our simulation data to earlier biochemical studies, we propose that ribosomal features at the exit of the tunnel can play a role in the regulation of nascent chain exit and ion flux. Moreover, our free-energy maps may provide a context for interpreting sequencedependent nascent chain phenomenology.fragment-based search ͉ free-energy calculation ͉ molecular dynamics ͉ simulation ͉ translation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.