Knowledge is nowadays considered as a significant source of performance improvement, but may be difficult to identify, structure, analyse and reuse properly. A possible source of knowledge is in the data and information stored in various modules of industrial information systems, like CMMS (Computerized Maintenance Management Systems) for maintenance. In that context, the main objective of this paper is to propose a framework allowing to manage and generate knowledge from information on past experiences, in order to improve the decisions related to the maintenance activity. In that purpose, we suggest an original Experience Feedback process dedicated to maintenance, allowing to capitalize on past activities by (i) formalizing the domain knowledge and experiences using a visual knowledge representation formalism with logical foundation (Conceptual Graphs); (ii) extracting new knowledge thanks to association rules mining algorithms, using an innovative interactive approach; and (iii) interpreting and evaluating this new knowledge thanks to the reasoning operations of Conceptual Graphs. The suggested method is illustrated on a case study based on real data dealing with the maintenance of overhead cranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.