COVID-19 has caused millions of infections and deaths over the last 2 years. Machine learning models have been proposed as an alternative to conventional epidemiologic models in an effort to optimize short- and medium-term forecasts that will help health authorities to optimize the use of policies and resources to tackle the spread of the SARS-CoV-2 virus. Although previous machine learning models based on time pattern analysis for COVID-19 sensed data have shown promising results, the spread of the virus has both spatial and temporal components. This manuscript proposes a new deep learning model that combines a time pattern extraction based on the use of a Long-Short Term Memory (LSTM) Recurrent Neural Network (RNN) over a preceding spatial analysis based on a Convolutional Neural Network (CNN) applied to a sequence of COVID-19 incidence images. The model has been validated with data from the 286 health primary care centers in the Comunidad de Madrid (Madrid region, Spain). The results show improved scores in terms of both root mean square error (RMSE) and explained variance (EV) when compared with previous models that have mainly focused on the temporal patterns and dependencies.
Diabetes is a chronic disease caused by the inability of the pancreas to produce insulin or problems in the body to use it efficiently. It is one of the fastest growing health challenges affecting more than 400 million people worldwide, according to the World Health Organization. Intensive research is being carried out on artificial intelligence methods to help people with diabetes to optimize the way in which they use insulin, carbohydrate intakes, or physical activity. By predicting upcoming levels of blood glucose concentrations, preventive actions can be taken. Previous research studies using machine learning methods for blood glucose level predictions have mainly focused on the machine learning model used. Little attention has been given to the pre-processing of insulin and carbohydrate signals in order to mimic the human absorption processes. In this manuscript, a recurrent neural network (RNN) based model for predicting upcoming blood glucose levels in people with type 1 diabetes is combined with several carbohydrate and insulin absorption curves in order to optimize the prediction results. The proposed method is applied to data from real patients suffering type 1 diabetes mellitus (T1DM). The achieved results are encouraging, obtaining accuracy levels around 0.510 mmol/L (9.2 mg/dl) in the best scenario.
Type 1 diabetes is a chronic disease caused by the inability of the pancreas to produce insulin. Patients suffering type 1 diabetes depend on the appropriate estimation of the units of insulin they have to use in order to keep blood glucose levels in range (considering the calories taken and the physical exercise carried out). In recent years, machine learning models have been developed in order to help type 1 diabetes patients with their blood glucose control. These models tend to receive the insulin units used and the carbohydrate taken as inputs and generate optimal estimations for future blood glucose levels over a prediction horizon. The body glucose kinetics is a complex user-dependent process, and learning patient-specific blood glucose patterns from insulin units and carbohydrate content is a difficult task even for deep learning-based models. This paper proposes a novel mechanism to increase the accuracy of blood glucose predictions from deep learning models based on the estimation of carbohydrate digestion and insulin absorption curves for a particular patient. This manuscript proposes a method to estimate absorption curves by using a simplified model with two parameters which are fitted to each patient by using a genetic algorithm. Using simulated data, the results show the ability of the proposed model to estimate absorption curves with mean absolute errors below 0.1 for normalized fast insulin curves having a maximum value of 1 unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.