Spinal muscular atrophy is the most common genetic cause of infant mortality and is characterized by degeneration of lower motor neurons leading to muscle wasting. The causative gene has been identified as survival motor neuron (SMN). The invertebrate model organism Caenorhabditis elegans contains smn-1, the ortholog of human SMN. Caenorhabditis elegans smn-1 is expressed in various tissues including the nervous system and body wall muscle, and knockdown of smn-1 by RNA interference is embryonic lethal. Here we show that the smn-1(ok355) deletion, which removes most of smn-1 including the translation start site, produces a pleiotropic phenotype including late larval arrest, reduced lifespan, sterility as well as impaired locomotion and pharyngeal activity. Mutant nematodes develop to late larval stages due to maternal contribution of the smn-1 gene product that allows to study SMN-1 functions beyond embryogenesis. Neuronal, but not muscle-directed, expression of smn-1 partially rescues the smn-1(ok355) phenotype. Thus, the deletion mutant smn-1(ok355) provides a useful platform for functional analysis of an invertebrate ortholog of the human SMN protein.
We have cloned Caenorhabditis elegans lev-8 and demonstrated that it encodes a novel nicotinic acetylcholine receptor (nAChR) subunit (previously designated ACR-13), which has functional roles in body wall and uterine muscles as part of a levamisole-sensitive receptor. LEV-8 is an a subunit and is the first to be described from the ACR-8-like group, a new class of nAChR with atypical acetylcholine-binding site (loop C) and channel-lining motifs. A single base pair change in the first intron of lev-8 in lev-8(x15) mutants leads to alternative splicing and the introduction of a premature stop codon. lev-8(x15) worms are partially resistant to levamisole-induced egg laying and paralysis, phenotypes rescued by expression of the wild-type gene. lev-8(x15) worms also show reduced rates of pharyngeal pumping. Electrophysiological recordings from body wall muscle show that currents recorded in response to levamisole have reduced amplitude in lev-8(x15) compared with wild-type animals. Consistent with these phenotypic observations, green fluorescent protein fused to LEV-8 is expressed in body wall and uterine muscle, motor neurons and epithelial-derived socket cells. Thus, LEV-8 is a levamisole receptor subunit and exhibits the most diverse expression pattern of any invertebrate nAChR subunit studied to date.
Development of epithelial organs requires co-ordinated interactions between epithelial and mesenchymal tissues. Studies using null mutant mice have indicated that the ret receptor and its ligand, glial cell line-derived neurotrophic factor (GDNF), are crucial for initiation of development of the metanephric kidney. However, the role of this signalling system in other branching organs has not been analysed. Here we describe detailed expression studies of ret, GDNF, and a co-receptor for GDNF (GDNFRα) in the developing mouse metanephros, lung, and submandibular salivary gland. Also, we examined the role of this signalling system in the development of these organs in vitro. In situ hybridisation revealed differences in the spatial distribution of the three transcripts in the different organs. At the initiation of metanephric development, late on embryonic day 10 (E10), ret and GDNFRα were detected in the Wolffian duct (including the presumptive ureteric bud) whilst the presumptive metanephric mesenchyme expressed GDNFRα and GDNF. Later in development, all three transcripts were restricted to the nephrogenic zone. In contrast, expression in the lung was not detectable by in situ hybridisation until after initiation of development, at E13.5. At this time ret was expressed throughout the epithelium; GDNF was detected throughout the mesenchyme, and GDNFRα was present in the proximal epithelium and mesenchyme only. Ret and GDNF were not detected in the epithelium or mesenchyme of the developing salivary gland, however, GDNFRα was expressed in the mesenchyme at E13.5 and E16.5. Functional studies demonstrated that in organ culture, GDNF significantly increased branching morphogenesis of the E11.5 metanephros, and induced the formation of ectopic ureteric buds from the base of the bud and from the Wolffian duct. The development of lung and salivary primordia were not affected under similar growth conditions. In a novel ureteric bud primary culture system, GDNF significantly increased cell numbers at 24 and 48 h. In cells cultured on laminin this increase was due to increased survival and proliferation, whereas in cells cultured on fibronectin, only survival was enhanced. Our data suggest that GDNF stimulates outgrowth of the ureteric bud, in part, by enhancing cell survival and possibly by increasing proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.