Fetal growth restriction (FGR) is common, affecting around 10% of all pregnancies. Growth restricted fetuses fail to achieve their genetically predetermined size and often weigh <10th centile for gestation. However, even appropriately grown fetuses can be affected, with the diagnosis of FGR missed before birth. Babies with FGR have a higher rate of stillbirth, neonatal morbidity such as breathing problems, and neurodevelopmental delay. FGR is usually due to placental insufficiency leading to poor placental perfusion and fetal hypoxia. MRI is increasingly used to image the fetus and placenta. Here we explore the use of novel multi-compartment Intravoxel Incoherent Motion Model (IVIM)-based models for MRI fetal and placental analysis, to improve understanding of FGR and quantify abnormalities and biomarkers in fetal organs. In 12 normally grown and 12 FGR gestational-age matched pregnancies (Median 28 +4 wks±3 +3 wks) we acquired T2 relaxometry and diffusion MRI datasets. Decreased perfusion, pseudo-diffusion coefficient, and fetal blood T2 values in the placenta and fetal liver were significant features distinguishing between FGR and normal controls (p-value <0.05). This may be related to the preferential shunting of fetal blood away from the fetal liver to the fetal brain that occurs in placental insufficiency. These features were used to predict FGR diagnosis and gestational age at delivery using simple machine learning models. Texture analysis was explored to compare Haralick features between control and FGR fetuses, with the placenta and liver yielding the most significant differences between the groups. This project provides insights into the effect of FGR on fetal organs emphasizing the significant impact on the fetal liver and placenta, and the potential of an automated approach to diagnosis by leveraging simple machine learning models.
Background Image-domain motion correction of black-blood contrast T2-weighted fetal cardiovascular magnetic resonance imaging (CMR) using slice-to-volume registration (SVR) provides high-resolution three-dimensional (3D) images of the fetal heart providing excellent 3D visualisation of vascular anomalies [1]. However, 3D segmentation of these datasets, important for both clinical reporting and the application of advanced analysis techniques is currently a time-consuming process requiring manual input with potential for inter-user variability. Methods In this work, we present novel 3D fetal CMR population-averaged atlases of normal and abnormal fetal cardiovascular anatomy. The atlases are created using motion-corrected 3D reconstructed volumes of 86 third trimester fetuses (gestational age range 29-34 weeks) including: 28 healthy controls, 20 cases with postnatally confirmed neonatal coarctation of the aorta (CoA) and 38 vascular rings (21 right aortic arch (RAA), 17 double aortic arch (DAA)). We used only high image quality datasets with isolated anomalies and without any other deviations in the cardiovascular anatomy.In addition, we implemented and evaluated atlas-guided registration and deep learning (UNETR) methods for automated 3D multi-label segmentation of fetal cardiac vessels. We used images from CoA, RAA and DAA cohorts including: 42 cases for training (14 from each cohort), 3 for validation and 6 for testing. In addition, the potential limitations of the network were investigated on unseen datasets including 3 early gestational age (22 weeks) and 3 low SNR cases. Results We created four atlases representing the average anatomy of the normal fetal heart, postnatally confirmed neonatal CoA, RAA and DAA. Visual inspection was undertaken to verify expected anatomy per subgroup. The results of the multi-label cardiac vessel UNETR segmentation showed 100$$\%$$ % per-vessel detection rate for both normal and abnormal aortic arch anatomy. Conclusions This work introduces the first set of 3D black-blood T2-weighted CMR atlases of normal and abnormal fetal cardiovascular anatomy including detailed segmentation of the major cardiovascular structures. Additionally, we demonstrated the general feasibility of using deep learning for multi-label vessel segmentation of 3D fetal CMR images.
Fetal growth restriction (FGR) is a prevalent pregnancy condition characterised by failure of the fetus to reach its genetically predetermined growth potential. The multiple aetiologies, coupled with the risk of fetal complications - encompassing neurodevelopmental delay, neonatal morbidity, and stillbirth - motivate the need to improve holistic assessment of the FGR fetus using MRI. We hypothesised that the fetal liver and placenta would provide insights into FGR biomarkers, unattainable through conventional methods. Therefore, we explore the application of model fitting techniques, linear regression machine learning models, deep learning regression, and Haralick textured features from multi-contrast MRI for multi-fetal organ analysis of FGR. We employed T2 relaxometry and diffusion-weighted MRI datasets (using a combined T2-diffusion scan) for 12 normally grown and 12 FGR gestational age (GA) matched pregnancies (Estimated Fetal Weight below 3rd centile, Median 28+/-3wks). We applied the Intravoxel Incoherent Motion Model, which describes circulatory properties of the fetal organs, and analysed the resulting features distinguishing both cohorts. We additionally used novel multi-compartment models for MRI fetal analysis, which exhibit potential to provide a multi-organ FGR assessment, overcoming the limitations of empirical indicators - such as abnormal artery Doppler findings - to evaluate placental dysfunction. The placenta and fetal liver presented key differentiators between FGR and normal controls, with significant decreased perfusion, abnormal fetal blood motion and reduced fetal blood oxygenation. This may be associated with the preferential shunting of the fetal blood towards the fetal brain, affecting supply to the liver. These features were further explored to determine their role in assessing FGR severity, by employing simple machine learning models to predict FGR diagnosis (100% accuracy in test data, n=5), GA at delivery, time from MRI scan to delivery, and baby weight. We additionally explored the use of deep learning to regress the latter three variables, training a convolutional neural network with our liver and placenta voxel-level parameter maps, obtained from our multi-compartment model fitting. Image texture analysis of the fetal organs demonstrated prominent textural variations in the placental perfusion fractions maps between the groups (p<0.0009), and spatial differences in the incoherent fetal capillary blood motion in the liver (p<0.009). This research serves as a proof-of-concept, investigating the effect of FGR on fetal organs, measuring differences in perfusion and oxygenation within the placenta and fetal liver, and their prognostic importance in automated diagnosis using simple machine learning models.
This work introduces the first black blood 3D T2w MRI atlases of the normal fetal heart and congenital aortic arch anomalies. The atlases were generated from 87 subjects from normal, CoA, RAA and DAA cohorts and also include multi-label segmentations of the major cardiovascular structures. We further evaluated the feasibility of using deep learning for automated multi-label vessel segmentation in 3D T2w motion-corrected MRI images of the fetal heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.