The energy cascade and diverse turbulence properties of active-grid-generated turbulence were studied in a wind tunnel via hot-wire anemometry. To this aim, two active grid protocols were considered. The first protocol is the standard triple-random mode, where the grid motors are driven with random rotation rates and directions, which are changed randomly in time. This protocol has been extensively used due to its capacity to produce higher values of Re λ than its passive counter part, with good statistical homogeneity and isotropy. The second protocol was a static or open grid mode, where all grid blades were completely open, yielding the minimum blockage attainable with our grid.Centreline streamwise profiles were measured for both protocols and several inlet velocities. It was found that the turbulent flow generated with the triple-random protocol evolved in the streamwise direction consistently with an energy dissipation scaling of the form ε = C ε u 3 /L, with C ε being a constant, L the longitudinal integral length-scale, and u the rms of the longitudinal velocity fluctuations.Conversely for the open-static grid mode, the energy dissipation followed a non-equilibrium turbulence scaling, namely, C ε ∼ Re G /Re L , where Re G is a global Reynolds number based on the inlet conditions of the flow, and Re L is based on the local properties of the flow downstream the grid. Furthermore, this open-static grid mode scaling exhibits important differences with other grids, as the downstream location of the peak of turbulence intensity is a function of the inlet velocity, a remarkable observation not previously reported, as it would allow to study the underlying principles of the transition between equilibrium and non-equilibrium scalings, which are yet to be understood.It was also found that a rather simple theoretical model can predict the value of C ε based on the number density of zero-crossings of the longitudinal velocity fluctuations. A theory, which is valid for both active grid operating protocols (and therefore two different energy cascades).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.