Our data indicate that HPA axis activation in acute and chronic pain models is time dependent and may be dissociated from evoked hyperalgesia. Therefore, HPA-axis activation represents an important variable to be considered when designing experimental assays of persistent pain as well as for interpretation of data.
The biological basis of the clinical efficacy of lithium in the treatment of mental illness has been extensively studied in neurones, but little is known about the effects of the drug on glia. Recently we showed that treatment of rats with clinically relevant doses of lithium chloride results in a 35% increase in the immunocontent of the astrocyte marker GFAP in the hippocampus. Here we studied the cytology of this phenomenon. Rats were treated for 4 weeks with a lithium diet which resulted in serum Li+ concentrations of 0.6-1.2 mmol/l. GFAP immunocytochemistry of the hippocampus revealed a mild gliosis in the CA1 area and the dentate gyrus which was associated with a change in the orientation of astrocytic processes. In control animals astrocyte processes were mainly orientated perpendicular to the stratum pyramidale, whereas in treated animals the cells were predominantly stellar in appearance.
Complex febrile seizures during infancy constitute an important risk factor for development of epilepsy. However, little is known about the alterations induced by febrile seizures that make the brain susceptible to epileptic activity. In this context, the use of animal models of hyperthermic seizures (HS) could allow the temporal analysis of brain molecular changes that arise after febrile seizures. Here, we investigated temporal changes in hippocampal gene coexpression networks during the development of rats submitted to HS. Total RNA samples were obtained from the ventral hippocampal CA3 region at four time points after HS at postnatal day (P) 11 and later used for gene expression profiling. Temporal endpoints were selected for investigating the acute (P12), latent (P30 and P60) and chronic (P120) stages of the HS model. A weighted gene coexpression network analysis was used to characterize modules of coexpressed genes, as these modules might contain genes with similar functions. The transcriptome analysis pipeline consisted of building gene coexpression networks, identifying network modules and hubs, performing gene-trait correlations and examining changes in module connectivity. Modules were functionally enriched to identify functions associated with HS. Our data showed that HS induce changes in developmental, cell adhesion and immune pathways, such as Wnt, Hippo, Notch, Jak-Stat and Mapk. Interestingly, modules involved in cell adhesion, neuronal differentiation and synaptic transmission were activated as early as 1 day after HS. These results suggest that HS trigger transcriptional alterations that could lead to persistent neurogenesis, tissue remodeling and inflammation in the CA3 hippocampus, making the brain prone to epileptic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.