Key MessageMulti-trait genomic prediction models are useful to allocate available resources in breeding programs by targeted phenotyping of correlated traits when predicting expensive and labor-intensive quality parameters.AbstractMulti-trait genomic prediction models can be used to predict labor-intensive or expensive correlated traits where phenotyping depth of correlated traits could be larger than phenotyping depth of targeted traits, reducing resources and improving prediction accuracy. This is particularly important in the context of allocating phenotyping resource in plant breeding programs. The objective of this work was to evaluate multi-trait models predictive ability with different depth of phenotypic information from correlated traits. We evaluated 495 wheat advanced breeding lines for eight baking quality traits which were genotyped with genotyping-by-sequencing. Through different approaches for cross-validation, we evaluated the predictive ability of a single-trait model and a multi-trait model. Moreover, we evaluated different sizes of the training population (from 50 to 396 individuals) for the trait of interest, different depth of phenotypic information for correlated traits (50 and 100%) and the number of correlated traits to be used (one to three). There was no loss in the predictive ability by reducing the training population up to a 30% (149 individuals) when using correlated traits. A multi-trait model with one highly correlated trait phenotyped for both the training and testing sets was the best model considering phenotyping resources and the gain in predictive ability. The inclusion of correlated traits in the training and testing lines is a strategic approach to replace phenotyping of labor-intensive and high cost traits in a breeding program.Electronic supplementary materialThe online version of this article (10.1007/s00122-018-3186-3) contains supplementary material, which is available to authorized users.
Genomic selection (GS) has successfully been used in plant breeding to improve selection efficiency and reduce breeding time and cost. However, there is not a clear strategy on how to incorporate genotype × environment interaction (GEI) to GS models. Increased prediction accuracy could be achieved using mixed models to exploit GEI by borrowing information from other environments. The objective of this work was to compare strategies to exploit GEI in GS using mixed models. Specifically, we compared strategies to predict new genotypes by borrowing information from other environments modeling the correlation matrix across environments and to design sets of environments aiming for low GEI to predict genomic performance in new environments. We evaluated 1477 advanced wheat (Triticum aestivum L.) lines for yield in 35 location–year combinations genotyped with genotyping‐by‐sequencing (GBS). Mixed models were used to obtain either overall or by‐environment predictions for different sets of environments. Overall accuracy was high (0.5). Borrowing information from relatives evaluated in multiple environments and modeling the correlation matrix across environments was the best strategy to predict new genotypes. On the other hand, the best strategy for predicting the performance of genotypes in new environments was either to predict across locations for single years or to predict within defined mega‐environments (MEs) for any year or location. In summary, higher predictive ability was obtained by characterizing and by modeling GEI in the GS context.
The single most important decision in plant breeding programs is the selection of appropriate crosses. The ideal cross would provide superior predicted progeny performance and enough diversity to maintain genetic gain. The aim of this study was to compare the best crosses predicted using combinations of mid-parent value and variance prediction accounting for linkage disequilibrium (V) or assuming linkage equilibrium (V). After predicting the mean and the variance of each cross, we selected crosses based on mid-parent value, the top 10% of the progeny, and weighted mean and variance within progenies for grain yield, grain protein content, mixing time, and loaf volume in two applied wheat ( L.) breeding programs: Instituto Nacional de Investigación Agropecuaria (INIA) Uruguay and CIMMYT Mexico. Although the variance of the progeny is important to increase the chances of finding superior individuals from transgressive segregation, we observed that the mid-parent values of the crosses drove the genetic gain but the variance of the progeny had a small impact on genetic gain for grain yield. However, the relative importance of the variance of the progeny was larger for quality traits. Overall, the genomic resources and the statistical models are now available to plant breeders to predict both the performance of breeding lines per se as well as the value of progeny from any potential crosses.
Aegilops tauschii, the diploid wild progenitor of the D-subgenome of bread wheat, constitutes a reservoir of genetic diversity for improving bread wheat performance and environmental resilience. To better define and understand this diversity, we sequenced 242 Ae. tauschii accessions and compared them to the wheat D-subgenome. We characterized a rare, geographically-restricted lineage of Ae. tauschii and discovered that it contributed to the wheat D-subgenome, thereby elucidating the origin of bread wheat from at least two independent hybridizations. We then used k-mer-based association mapping to identify discrete genomic regions with candidate genes for disease and pest resistance and demonstrated their functional transfer into wheat by transgenesis and wide crossing, including the generation of a library of ‘synthetic’ hexaploids incorporating diverse Ae. tauschii genomes. This pipeline permits rapid trait discovery in the diploid ancestor through to functional genetic validation in a hexaploid background amenable to breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.