The anatomical structure of the coronary-aortic junctions in humans is studied by using corrosion casts of the coronary network. A model is proposed for the specification of these junctions in terms of vessel diameters and branching angles, and the model is used to produce morphological data on these junctions which hitherto have not been available. This anatomical model correlates poorly with the accepted theoretical model of arterial bifurcations in the cardiovascular system. The results suggest that the structure of the coronary-aortic junctions is very different from the structure of typical arterial bifurcations and, by implication, that the flow conditions under which they function are very different. A good understanding of these junctions is important in coronary bypass surgery, where the coronary-aortic junctions are emulated by creating a new anastomosis for the graft at the base of the ascending aorta, and in coronary artery disease, where atherosclerotic lesions occur not far from the coronary-aortic junctions.
A model is proposed for describing common variations in the arrangement of branches on the arch of the human aorta, and the model is used to analyze data from 123 human arches. The analysis allows the observed variations to fall freely along a continuous spectrum, rather than be confined to discrete categories as is commonly done at present. The results thus describe these variations in a more natural way and throw some new light on their likely source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.