Dendritic cells (DCs) are a type of antigen-presenting cells that play an important role in the immune response against Trypanosoma cruzi, the causative agent of Chagas disease. In vitro and in vivo studies have shown that the modulation of these cells by this parasite can directly affect the innate and acquired immune response of the host in order to facilitate its biological cycle and the spreading of the species. Many studies show the mechanisms by which T. cruzi modulates DCs, but the interaction of these cells with the Mexican strains of T. cruzi such as Ninoa and INC5 has not yet been properly investigated. Here, we evaluated whether Ninoa and INC5 strains evaded the immunity of their hosts by modulating the biology and function of murine DCs. The CL-Brener strain was used as the reference strain. Herein, it was demonstrated that Ninoa was more infective toward bone marrow-derived dendritic cells (BMDCs) than INC5 and CL-Brener strains in both BMDCs of BALB/c and C57BL/6 mice. Mexican strains of T. cruzi induced different cytokine patterns. In BMDCs obtained from BALB/c mice, Ninoa strain led to the reduction in IL-6 and increased IL-10 production, while in C57BL/6 mice Ninoa strain considerably increased the productions of TNF-α and IL-10. Also, Ninoa and INC5 differentially modulated BMDC expressions of MHC-II, TLR2, and TLR4 in both BALB/c and C57BL/6 mice compared to Brazilian strain CL-Brener. These results indicate that T. cruzi Mexican strains differentially infect and modulate MHC-II, toll-like receptors, and cytokine production in DCs obtained from C57BL/6 and BALB/c mice, suggesting that these strains have developed particular modulatory strategies to disrupt DCs and, consequently, the host immune responses.
Congenital transmission of Chagas disease plays an important role in endemic countries because it is not a diagnosis that is encountered frequently in prenatal care. Due to limited information regarding congenital transmission of Trypanosoma cruzi in Mexico, the present study aimed to investigate protozoan infectivity and modulation of immune responses in human placental explants infected with T. cruzi Ia Mexican strains. The Inc-5 strain showed increased infectivity and modulated IL-1β, IL-10 and TLR-4, decreasing their expression after 24 h of infection. Both strains (Inc-5 and Ninoa) stimulated the production of TNF-α and decreased IL-6 levels 96 h after infection. An important detachment of the syncytiotrophoblast caused by infection with T. cruzi was observed after 24 h of infection. In this study, ex vivo infection of human placental villi was performed to better understand interactions involving parasitic T. cruzi and human placental tissue. It was concluded that the strains of TcIa present parasitism in placental tissue, modulation of the innate immune system of the placenta, and cause intense detachment of the syncytiotrophoblast, a fact that may be more associated with abortion and premature birth events than the congenital transmission itself, justifying the low rate of this transmission mechanism by this genotype.
In order to evaluate and compare the specific immune response of pregnant women (PW) chronically infected with Toxoplasma gondii, with and without gestational diabetes mellitus (GDM), and the humoral response of their respective newborns (NB), the study was carried out on 81 PW (34 GDM and 47 controls) from whose medical records the results of the oral glucose tolerance test (OGTT) were obtained, and blood samples were collected at the third trimester of pregnancy; also, on 45 NBs (20 GDM and 25 controls) from whom umbilical cord blood samples were obtained. Humoral immunity was analyzed by measuring anti-T. gondii total IgG, IgG subclasses and IgG avidity. To evaluate cellular immunity, peripheral blood mononuclear cells (PBMC) from 32 PW (16 GDM and 16 controls) were cultured, supernatant cytokines were determined, and flow cytometry was performed to analyze the expression at lymphocytes of surface molecules, cytokines and transcription factors. All PW and NBs were positive for total IgG, and the prevalent subclass was IgG1. There was a negative correlation between the OGTT glycemia of PW and the levels of total IgG, IgG1 and IgG avidity. The IgG avidity of the GDM group was significantly lower than the control group. Patients from the GDM group had a higher number of T lymphocytes expressing markers of cell activation and exhaustion (CD28 and PD-1). In the presence of T. gondii soluble antigen (STAg) the amount of CD4+ T cells producing IFN-γ, IL-10 and IL-17 was significantly lower in the GDM group, while there was no difference between groups in the number of CD4+ CD25HighFOXP3+LAP+ functional Treg cells. Additionally, under STAg stimulus, the secretion of IL-17, IL-4, TNF and IL-2 cytokines at PBMCs culture supernatant was lower in the GDM group. In conclusion, there was a correlation between the increase in blood glucose and the decrease in levels of anti-T. gondii antibodies, associated with the decreased IgG avidity in patients who develop GDM. Also, the GDM group had decreased immune responses in Th1, Th2 and Th17 profiles, suggesting an association between GDM and the negative modulation of the humoral and cellular immune responses against T. gondii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.