A new parametric class of iterative schemes for solving nonlinear systems is designed. The third- or fourth-order convergence, depending on the values of the parameter being proven. The analysis of the dynamical behavior of this class in the context of scalar nonlinear equations is presented. This study gives us important information about the stability and reliability of the members of the family. The numerical results obtained by applying different elements of the family for solving the Hammerstein integral equation and the Fisher’s equation confirm the theoretical results.
A general optimal iterative method, for approximating the solution of nonlinear equations, of (n+1) steps with 2n+1 order of convergence is presented. Cases n=0 and n=1 correspond to Newton’s and Ostrowski’s schemes, respectively. The basins of attraction of the proposed schemes on different test functions are analyzed and compared with the corresponding to other known methods. The dynamical planes showing the different symmetries of the basins of attraction of new and known methods are presented. The performance of different methods on some test functions is shown.
In this manuscript, we design an iterative step that can be added to any numerical process for solving systems of nonlinear equations. By means of this addition, the resulting iterative scheme obtains, simultaneously, all the solutions to the vectorial problem. Moreover, the order of this new iterative procedure duplicates that of their original partner. We apply this step to some known methods and analyse the behaviour of these new algorithms, obtaining simultaneously the roots of several nonlinear systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.