The activation of the activating protein-1 (AP-1) family of transcription factors, including c-Fos and c-Jun family members, is one of the earliest nuclear events induced by growth factors that stimulate extracellular signal-regulated kinases (ERKs). In the case of c-Fos, the activation of ERK leads to an increased expression of c-fos mRNA. In turn, we have recently shown that ERK phosphorylates multiple residues within the carboxylterminal transactivation domain (TAD) of c-Fos, thus resulting in its increased transcriptional activity. However, how ERK-dependent phosphorylation regulates c-Fos function is still poorly understood. In this regard, it has been recently observed that the prolyl isomerase Pin1 can interact with proteins phosphorylated on serine or threonine residues that precede prolines (pS/T-P), such as the transcription factors p53 and c-Jun, thereby controlling their activity by promoting the cis-trans isomerization of these pS/T-P bonds. Here, we found that Pin1 binds c-Fos through specific pS/T-P sites within the c-Fos TAD, and that this interaction results in an enhanced transcriptional response of c-Fos to polypeptide growth factors that stimulate ERK. Our findings suggest that c-Fos represents a novel target for the isomerizing activity of Pin1 and support a role for Pin1 in the mechanism by which c-Jun and c-Fos can cooperate to regulate AP-1-dependent gene transcription upon phosphorylation by mitogen-activated kinase (MAPK) family members.
Polypeptide growth factors, such as platelet-derived growth factor (PDGF), promote the reinitiation of DNA synthesis and cell growth through multiple intracellular signaling pathways that converge in the nucleus to regulate the activity of transcription factors, thereby controlling the expression of growth-promoting genes. Among them, the AP-1 (activating protein-1) family of transcription factors, including c-Fos and c-Jun family members, plays a key role, as AP-1 activity is potently activated by PDGF and is required to stimulate cell proliferation. However, the nature of the pathways connecting PDGF receptors to AP-1 is still poorly defined. In this study, we show that PDGF regulates AP-1 by stimulating the expression and function of c-Fos through extracellular signal-regulated kinase (ERK). The latter involves the direct phosphorylation by ERK of multiple residues in the carboxyl-terminal transactivation domain of c-Fos, which results in its increased transcriptional activity. Interestingly, the phosphorylation of c-Fos by ERK was required for the ability of PDGF and serum to stimulate the activity of c-Fos as well as AP-1-dependent transcription. Furthermore, we provide evidence that the ERK-dependent activation of c-Fos is an integral component of the mitogenic pathway by which PDGF regulates normal and aberrant cell growth.
The elevation of intracellular cAMP synergistically enhances the neuregulin-dependent proliferation of cultured Schwann cells (SCs); however, the mechanism by which this occurs has not been completely defined. To better understand this mechanism, we investigated the effect of cAMP on the activation of the extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3-K)-Akt (PKB) pathways by heregulin, a member of the neuregulin family. Using primary cultures of adult SCs, we demonstrated that the adenylyl cyclase activator, forskolin, enhanced heregulin-dependent SC proliferation by reducing the time required for S-phase entry. When cAMP levels were increased, using either forskolin or a cell permeable analogue of cAMP, the heregulin-induced phosphorylation of ERK was converted from transient to sustained and the heregulin-induced phosphorylation of Akt was synergistically increased. Consistent with these observations, studies in which inhibitors of MEK, the upstream stimulating ERK kinase, and PI3-K were administered at different times following the onset of stimulation indicated that sustained high levels of both MEK/ERK and PI3-K/Akt activity before S-phase initiation were essential for S-phase entry. Overall, these novel results indicate that in neuregulin-stimulated SCs the activation of cAMP-mediated pathways accelerates G1-S progression by prolonging ERK activation and concurrently enhancing Akt activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.