Under in vivo conditions, there is little control over the amount of water left on the tooth and, thus, there is the danger of leaving the dentin surface so wet that the bonding resin undergoes physical separation into hydrophobic and hydrophilic-rich phases. The purpose of this study was to investigate phase separation in 2,2-bis[4(2-hydroxy-3-methacryloyloxy-propyloxy)-phenyl] propane (BisGMA)-based adhesive using molecular microanalysis and to examine the effect of phase separation on the structural characteristics of the hybrid layer. Model BisGMA/HEMA (hydroxyethl methacrylate) mixtures with/without ethanol and commercial BisGMA-based adhesive (Single Bond) were combined with water at concentrations from 0 to 50 vol%. Macrophase separation in the BisGMA/HEMA/water mixtures was detected using cloud point measurements. In parallel with these measurements, the BisGMA/HEMA and adhesive/water mixtures were cast as films and polymerized. Molecular structure was recorded from the distinct features in the phase-separated adhesive using confocal Raman microspectroscopy (CRM). Human dentin specimens treated with Single Bond were analyzed with scanning electron microscopy (SEM) and CRM mapping across the dentin/adhesive interface. The model BisGMA/HEMA mixtures with ethanol and the commercial BisGMA-based adhesive experienced phase separation at approximately 25 vol% water. Raman spectra collected from the phase-separated adhesive indicated that the composition of the particles and surrounding matrix material was primarily BisGMA and HEMA, respectively. Based on SEM analysis, there was substantial porosity at the adhesive interface with dentin. Micro-Raman spectral analysis of the dentin/adhesive interface indicates that the contribution from the BisGMA component decreases by nearly 50% within the first micrometer. The morphologic results in corroboration with the spectroscopic data suggest that as a result of adhesive phase separation the hybrid layer is not an impervious 3-dimensional collagen/polymer network but a porous web characterized by hydrophobic BisGMA-rich particles distributed in a hydrophilic HEMA-rich matrix.
Results from clinical studies suggest that more than half of the 166 million dental restorations that were placed in the United States in 2005 were replacements for failed restorations. This emphasis on replacement therapy is expected to grow as dentists use composite as opposed to dental amalgam to restore moderate to large posterior lesions. Composite restorations have higher failure rates, more recurrent caries, and increased frequency of replacement as compared to amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and premature failure. Under in vivo conditions the bond formed at the adhesive/dentin interface can be the first defense against these noxious, damaging substances. The intent of this article is to review structural aspects of the clinical substrate that impact bond formation at the adhesive/dentin interface; to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface.
Although it is generally proposed that dentin bonding results from adhesive infiltration of superficially demineralized dentin, it is not clear how well the resin monomers seal the dentin collagen fibrils under wet bonding conditions. The aim of this study was to determine the quality and molecular structure of adhesive/dentin (a/d) interfaces formed with wet bonding as compared with adhesive-infiltrated demineralized dentin (AIDD) produced under controlled conditions (optimum hybrid). From each extracted, unerupted human 3rd molar, one fraction was demineralized, dehydrated, and infiltrated with Single Bond (SB) adhesive under optimum conditions; the remaining, adjacent fraction was treated with SB by wet bonding. AIDD and a/d interface sections were stained with Goldner's trichrome; corresponding sections were analyzed with micro-Raman spectroscopy. The histomorphologic and spectroscopic results suggest that, under wet bonding, the a/d interface is a porous collagen web infiltrated primarily by the hydrolytically unstable HEMA.
To date, the dentin/adhesive (d/a) bond has primarily been studied by morphologic analysis in conjunction with bond strength measurement. Although these analyses have enhanced our understanding, numerous questions about the chemistry have not been answered. The purpose of this study was to determine, at the molecular level, quantitative differences in the composition of the d/a interface formed under "wet" bonding conditions. The occlusal one-third of the crown was removed from 10 extracted, unerupted human third molars. The prepared dentin surfaces were treated, per manufacturers' instructions, with either Single Bond (3M) or One-Step adhesive (Bisco). Three-micron-thick sections of the d/a interface were cut and stained with Goldner trichrome for light microscopy. Companion slabs were analyzed with micro-Raman spectroscopy; the sample was placed at the focus of a 100x microscope objective, and spectra were acquired at 1-microm intervals across the d/a interface. Reference spectra were collected on model compounds of type I collagen and adhesive; the relative ratios of the integrated intensities of spectral features from adhesive and collagen were determined and plotted as a function of wt% adhesive. The same ratios were determined for the interface samples; by comparing these ratios with the calibration curve generated from the model compounds, we determined the percent of adhesive as a function of spatial position across the d/a interface. The relative percent of Single Bond adhesive was < 50% throughout more than half of the hybrid layer; One Step adhesive was > or = 50% throughout most of the hybrid. The results from this study provide the first direct chemical evidence of phase separation in a dentin adhesive and its detrimental effect on the dentin/adhesive bond.
Abstract:In clinical practice, dentists must frequently bond adhesives to caries-affected dentin substrates, but the bond that characteristically forms with these substrates does not provide the durability necessary for long-term clinical function. The purpose of this study was to characterize and compare the interfacial chemistry of adhesive with caries-affected and noncarious dentin using microRaman spectroscopy. The results indicated that the differences in the Raman spectra between noncarious and cariesaffected dentin could not be accounted for by simple decreased mineralization. Both the structure of collagen and mineral in the caries-affected dentin has been altered by the caries process. The differences in structure and composition not only interfered with acid-etching process but also subsequent resin monomer penetration. It was shown that the interface between the adhesive and caries-affected dentin was wider and more complicated than that of the adhesive and noncarious dentin. As a result of adhesive phase separation, a structurally integrated hybrid layer did not form at the interface with either caries-affected or noncarious dentin. Using chemical imaging techniques, this study provides the direct evidence of adhesive phase separation at the interface with caries-affected dentin. Although our group previously reported adhesive phase separation at the interface with noncarious dentin, the chemistry of caries-affected dentin leads to greater variability and a more highly irregular composition along the length and breadth of the interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.