Effect of shading by baobab (Adansonia digitata) and néré (Parkia biglobosa) on yields of millet (Pennisetum glaucum) and taro (Colocasia esculenta) in parkland systems in Burkina Faso, West Africa Abstract An experiment was conducted in Nobéré, Burkina Faso to assess the effect of shade of two indigenous fruit trees, Adansonia digitata (Baobab) and Parkia biglobosa (Néré), on a shade-tolerant crop called taro (Colocasia esculenta) in comparison with millet (Pennisetum glaucum) a shade-intolerant crop. Photosynthetically active radiation (PAR) and performance of crops under trees and in the open field were assessed during three cropping seasons. Millet performed better under baobab (806.1 ± 121.48 kg ha -1 ) compared to the control plot (595.8 ± 83.43 kg ha -1 ) and néré (320.2 ± 59.91 kg ha -1 ). In contrast, the yield of taro was higher under néré (4124.0 ± 469.05 kg ha -1 ) compared to the control plot (2336.9 ± 617.04 kg ha -1 ) and baobab (2738.3 ± 595.61 kg ha -1 ). There was a strong relationship between the amount of PAR intercepted by trees and crop yields under trees. As PAR decreased the yield of millet decreased whereas the yield of taro increased. Hence, it was concluded that parkland productivity could be enhanced by cropping taro under néré where light reduction was 83, 56 and 18% in zones A, B and C, respectively. An efficient association of baobab with crops could be the production of taro in zone A and millet in zones B and C where PAR reduction was 62, 38 and 15%, respectively.
Photosynthesis and biomass production by millet (Pennisetum glaucum) and taro (Colocasia esculenta) grown under baobab (Adansonia digitata) and néré (Parkia biglobosa) was studied at Nobéré (Burkina Faso) with the aim of optimising parkland systems productivity. Millet yielded the highest biomass under Baobab and the lowest biomass was recorded in the zone close to the tree trunk of néré. In contrast, the biomass of taro was higher in heavy shaded zones under néré and the zone close to baobab's trunk. The two crops showed an increasing trend of photosynthesis rate (P N ) from tree trunk to the open area. However, the increase in the P N of taro from tree trunk to the open field was lower compared to that of millet. By increasing its leaf area index (LAI) under shade, taro displayed higher biomass production under tree compared to the open area while an opposite trend was observed in millet. The high millet biomass production under baobab could be explained by light availability and the reduction of temperature under shade compared to the open field. The adaptation of taro to shade by increasing its LAI and thus avoiding drastic reduction in P N under shade resulted in better biomass production under heavy shade. Therefore, it was concluded that by replacing millet with taro under dense tree crowns the productivity of agroforestry parkland systems could be increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.