Tumor-selective delivery of cytotoxic agents in the form of antibody-drug conjugates (ADCs) is now a clinically validated approach for cancer treatment. In an attempt to improve the clinical success rate of ADCs, emphasis has been recently placed on the use of DNA-cross-linking pyrrolobenzodiazepine compounds as the payload. Despite promising early clinical results with this class of ADCs, doses achievable have been low due to systemic toxicity. Here we describe the development of a new class of potent DNA-interacting agents wherein changing the mechanism of action from a cross-linker to a DNA alkylator improves the tolerability of the ADC. ADCs containing the DNA alkylator displayed similar in vitro potency, but improved bystander killing and in vivo efficacy, compared to those of the cross-linker. Thus, the improved in vivo tolerability and anti-tumor activity achieved in rodent models with ADCs of the novel DNA alkylator could provide an efficacious, yet safer option for cancer treatment.on May 9, 2018.
Polarity is a fundamental property of most cell types. The Par protein complex is a major driving force in generating asymmetrically localized protein networks and consists of atypical protein kinase C (aPKC), Par3, and Par6. Dysfunction of this complex causes developmental abnormalities and diseases such as cancer. We identified a PDZ domain-binding motif in Par6 that was essential for its interaction with Par3 in vitro and for Par3-mediated membrane localization of Par6 in cultured cells. In fly embryos, we observed that the PDZ domain-binding motif was functionally redundant with the PDZ domain in targeting Par6 to the cortex of epithelial cells. Our structural analyses by x-ray crystallography and NMR spectroscopy showed that both the PDZ1 and PDZ3 domains but not the PDZ2 domain in Par3 engaged in a canonical interaction with the PDZ domain-binding motif in Par6. Par3 thus has the potential to recruit two Par6 proteins simultaneously, which may facilitate the assembly of polarity protein networks through multivalent PDZ domain interactions.
A triglycyl peptide linker (CX) was designed for use in antibody-drug conjugates (ADC), aiming to provide efficient release and lysosomal efflux of cytotoxic catabolites within targeted cancer cells. ADCs comprising anti-epithelial cell adhesion molecule (anti-EpCAM) and anti-EGFR antibodies with maytansinoid payloads were prepared using CX or a noncleavable SMCC linker (CX and SMCC ADCs). The in vitro cytotoxic activities of CX and SMCC ADCs were similar for several cancer cell lines; however, the CX ADC was more active (5-100-fold lower IC 50 ) than the SMCC ADC in other cell lines, including a multidrug-resistant line. Both CX and SMCC ADCs showed comparable MTDs and pharmacokinetics in CD-1 mice. In Calu-3 tumor xenografts, antitumor efficacy was observed with the anti-EpCAM CX ADC at a 5-fold lower dose than the corresponding SMCC ADC in vivo. Similarly, the anti-EGFR CX ADC showed improved antitumor activity over the respective SMCC conjugate in HSC-2 and H1975 tumor models; however, both exhibited similar activity against FaDu xenografts. Mechanistically, in contrast with the charged lysine-linked catabolite of SMCC ADC, a significant fraction of the carboxylic acid catabolite of CX ADC could be uncharged in the acidic lysosomes, and thus diffuse out readily into the cytosol. Upon release from tumor cells, CX catabolites are charged at extracellular pH and do not penetrate and kill neighboring cells, similar to the SMCC catabolite. Overall, these data suggest that CX represents a promising linker option for the development of ADCs with improved therapeutic properties.
Antibody anilino maytansinoid conjugates (AaMCs) have been prepared in which a maytansinoid bearing an aniline group was linked through the aniline amine to a dipeptide, which in turn was covalently attached to a desired monoclonal antibody. Several such conjugates were prepared utilizing different dipeptides in the linkage including Gly-Gly, l-Val-l-Cit, and all four stereoisomers of the Ala-Ala dipeptide. The properties of AaMCs could be altered by the choice of dipeptide in the linker. Each of the AaMCs, except the AaMC bearing a d-Ala-d-Ala peptide linker, displayed more bystander killing in vitro than maytansinoid ADCs that utilize disulfide linkers. In mouse models, the anti-CanAg AaMC bearing a d-Ala-l-Ala dipeptide in the linker was shown to be more efficacious against heterogeneous HT-29 xenografts than maytansinoid ADCs that utilize disulfide linkers, while both types of the conjugates displayed similar tolerabilities.
To facilitate subcutaneous dosing, biotherapeutics need to exhibit properties that enable high-concentration formulation and long-term stability in the formulation buffer. For antibody–drug conjugates (ADCs), the introduction of drug-linkers can lead to increased hydrophobicity and higher levels of aggregation, which are both detrimental to the properties required for subcutaneous dosing. Herein we show how the physicochemical properties of ADCs could be controlled through the drug-linker chemistry in combination with prodrug chemistry of the payload, and how optimization of these combinations could afford ADCs with significantly improved solution stability. Key to achieving this optimization is the use of an accelerated stress test performed in a minimal formulation buffer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.