In virus dynamics, when a cell is infected, the number of virions outside the cells is reduced by one: this phenomenon is known as absorption effect. Most mathematical in vivo models neglect this phenomenon. Virus-to-cell infection and direct cell-to-cell transmission are two fundamental modes whereby viruses can be propagated and transmitted. In this work, we propose a new virus dynamics model, which incorporates both modes and takes into account the absorption effect and treatment. First we show mathematically and biologically the well-posedness of our model preceded by the result on the existence and the uniqueness of the solutions. Also, an explicit formula for the basic reproduction number R0 of the model is determined. By analyzing the characteristic equations we establish the local stability of the uninfected equilibrium and the infected equilibrium in terms of R0. The global behavior of the model is investigated by constructing an appropriate Lyapunov functional for uninfected equilibrium and by applying a geometric approach to the study of the infected equilibrium. Numerical simulations are carried out, to confirm the obtained theoretical result in a particular case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.