Alzheimer’s disease (AD) is a life-changing condition whose etiology is explained by several hypotheses. Recently, a new virus contributed to the evidence of viral involvement in AD: the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the COVID-19 coronavirus disease. AD was found to be one of the most common COVID-19 comorbidities, and it was found to increase mortality from this disease as well. Moreover, AD patients were observed to present with the distinct clinical features of COVID-19, with delirium being prevalent in this group. The SARS-CoV-2 virus enters host cells through the angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is overexpressed in brains with AD, which thus increases the viral invasion. Furthermore, the inhibition of the ACE2 receptor by the SARS-CoV-2 virus may also decrease the brain-derived neurotrophic factor (BDNF), contributing to neurodegeneration. The ApoE ε4 allele, which increases the risk of AD, was found to facilitate the SARS-CoV-2 entry into cells. Furthermore, the neuroinflammation and oxidative stress existing in AD patients enhance the inflammatory response associated with COVID-19. Moreover, pandemic and associated social distancing measures negatively affected the mental health, cognitive function, and neuro-psychiatric symptoms of AD patients. This review comprehensively covers the links between COVID-19 and Alzheimer’s disease, including clinical presentation, molecular mechanisms, and the effects of social distancing.
Epilepsy is an important medical problem with approximately 50 million patients globally. No more than 70% of epileptic patients will achieve seizure control after antiepileptic drugs, and several epileptic syndromes, including Lennox-Gastaut syndrome (LGS), are predisposed to more frequent pharmacoresistance. Ketogenic dietary therapies (KDTs) are a form of non-pharmacological treatments used in attempts to provide seizure control for LGS patients who experience pharmacoresistance. Our review aimed to evaluate the efficacy and practicalities concerning the use of KDTs in LGS. In general, KDTs are diets rich in fat and low in carbohydrates that put the organism into the state of ketosis. A classic ketogenic diet (cKD) is the best-evaluated KDT, while alternative KDTs, such as the medium-chain triglyceride diet (MCT), modified Atkins diet (MAD), and low glycemic index treatment (LGIT) present several advantages due to their better tolerability and easier administration. The literature reports regarding LGS suggest that KDTs can provide ≥50% seizure reduction and seizure-free status in a considerable percentage of the patients. The most commonly reported adverse effects are constipation, diarrhea, and vomiting, while severe adverse effects such as nephrolithiasis or osteopenia are rarely reported. The literature review suggests that KDTs can be applied safely and are effective in LGS treatment.
Endothelial progenitor cells (EPCs) are a population of cells that circulate in the blood looking for areas of endothelial or vascular injury in order to repair them. Endothelial dysfunction is an important component of disorders with neurovascular involvement. Thus, the subject of involvement of EPCs in such conditions has been gaining increasing scientific interest in recent years. Overall, decreased levels of EPCs are associated with worse disease outcome. Moreover, their functionalities appear to decline with severity of disease. These findings inspired the application of EPCs as therapeutic targets and agents. So far, EPCs appear safe and promising based on the results of pre-clinical studies conducted on their use in the treatment of Alzheimer’s disease and ischemic stroke. In the case of the latter, human clinical trials have recently started to be performed in this subject and provided optimistic results thus far. Whereas in the case of migraine, existing findings pave the way for testing EPCs in in vitro studies. This review aims to thoroughly summarize current knowledge on the role EPCs in four disorders with neurovascular involvement, which are Alzheimer’s disease, cerebral small vessel disease, ischemic stroke and migraine, with a particular focus on the potential practical use of these cells as a treatment remedy.
Recent years have brought a novel insight into our understanding of childhood acute lymphoblastic leukemia (ALL), along with several breakthrough treatment methods. However, multiple aspects of mechanisms behind this disease remain to be elucidated. Evidence suggests that leukemogenesis in ALL is widely influenced by epigenetic modifications. These changes include: DNA hypermethylation, histone modification and miRNA alteration. DNA hypermethylation in promoter regions, which leads to silencing of tumor suppressor genes, is a common epigenetic alteration in ALL. Histone modifications are mainly caused by an increased expression of histone deacetylases. A dysregulation of miRNA results in changes in the expression of their target genes. To date, several hundred genes were identified as suppressed by epigenetic mechanisms in ALL. What is promising is that epigenetic alterations in ALL may be used as potential biomarkers for classification of subtypes, predicting relapse and disease progression and assessing minimal residual disease. Furthermore, since epigenetic lesions are potentially reversible, an activation of epigenetically silenced genes with the use of hypomethylating agents or histone deacetylase inhibitors may be utilized as a therapeutic strategy for ALL. The following review summarizes our current knowledge about epigenetic modifications in ALL and describes potential uses of epigenetics in the clinical management of this disease.
Introduction and objective. Depression is a common mental disorder that affects over 264 million people worldwide. Medical students are at a particularly high risk of this disease. The aim of the study was to investigate the prevalence of depression among Polish medical students and to determine predictors of this disease that are related to student’s lifestyle. Material and method. A total of 1023 medical students took part in the study. The research tool included a Polish version of the PHQ-9 questionnaire and author’s questions which concerned sociodemographic characteristics of the investigated group and analyzed factors. Answers were collected in the April of 2020. Results. About a half of the students (51.61%, 95% CI: 48.50 – 54.72) were found to have major depression (PHQ score ≥ 10). 30.21% of the students had mild depressive symptoms, 26.00% – moderate depressive symptoms and 15.05% – moderately severe depressive symptoms. 10.56% of the participants had symptoms of severe depression. A statistically significant relationship was found between major depression and: frequent feelings of loneliness, not doing sports regularly, not getting enough sleep, not participating in social meetings often enough, having problems with maintaining stable body weight, using alcohol in order to relieve stress or negative emotions and being non-religious. Conclusions. Depression among medical students in Poland is common. There are many lifestyle-linked predictors which are associated with this disease in the above-mentioned group. It is crucial to take actions aimed at reducing the high prevalence rates of depression among medical students in Poland, such as introducing routine screening for depression and creating resources that would enable students to obtain help.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.