Gastric (GC) and esophageal (EC) cancers are highly lethal. Better understanding of molecular abnormalities is needed for new therapeutic targets and biomarkers to be found. Expression of 18 cancer-related genes in 31 paired normal-tumor samples was quantified by reversely-transcribed quantitative polymerase chain reaction (RTqPCR) and systemic concentration of 27 cytokines/chemokines/growth factors in 195 individuals was determined using Luminex xMAP technology. Only Ki67, CLDN2, and BCLxL were altered in GC while Ki67, CDKN1A, ODC1, SLC2A1, HIF1A, VEGFA, NOS2, CCL2, PTGS2, IL10, IL10Ra, and ACTA2 were changed in EC. The relatively unaltered molecular GC landscape resulted from high expression of BCLxL, CDKN1A, BCL2, Ki67, HIF1A, VEGFA, ACTA2, TJP1, CLDN2, IL7Ra, ODC1, PTGS2, and CCL2 in non-cancerous tissue. The NOS2 expression and IL-4, IL-9, FGF2, and RANTES secretion were higher in cardiac than non-cardiac GC. Four-cytokine panels (interleukin (IL)-1β/IL-1ra/IL-6/RANTES or IL-1β/IL-6/IL-4/IL-13) differentiated GC from benign conditions with 87–89% accuracy. Our results showed increased proliferative, survival, inflammatory and angiogenic capacity in gastric tumor-surrounding tissue, what might contribute to GC aggressiveness and facilitate cancer recurrence. Further studies are needed to determine the CLDN2 and NOS2 suitability as candidate molecular targets in GC and cardiac GC, respectively, and discern the role of CLDN2 or to verify IL-1β/IL-1ra/IL-6/RANTES or IL-1β/IL-6/IL-4/IL-13 usefulness as differential biomarkers.