The binary classifiers are appropriate for classification problems with two class labels. For multi-class problems, decomposition techniques, like one-vs-one strategy, are used because they allow the use of binary classifiers. The ensemble selection, on the other hand, is one of the most studied topics in multiple classifier systems because a selected subset of base classifiers may perform better than the whole set of base classifiers. Thus, we propose a novel concept of the dynamic ensemble selection based on values of the score function used in the one-vs-one decomposition scheme. The proposed algorithm has been verified on a real dataset regarding the classification of cutting tools. The proposed approach is compared with the static ensemble selection method based on the integration of base classifiers in geometric space, which also uses the one-vs-one decomposition scheme. In addition, other base classification algorithms are used to compare results in the conducted experiments. The obtained results demonstrate the effectiveness of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.