A new method based on dispersive microsolid phase extraction (DMSPE) and total-reflection X-ray fluorescence spectrometry (TXRF) is proposed for multielemental ultratrace determination of heavy metal ions and arsenic species. In the developed methodology, the crucial issue is a novel adsorbent synthesized by grafting 3-mercaptopropyl trimethoxysilane on a graphene oxide (GO) surface. Mercapto-modified graphene oxide (GO-SH) can be applied in quantitative adsorption of cobalt, nickel, copper, cadmium, and lead ions. Moreover, GO-SH demonstrates selectivity toward arsenite in the presence of arsenate. Due to such features of GO-SH nanosheets as wrinkled structure and excellent dispersibility in water, GO-SH seems to be ideal for fast and simple preconcentration and determination of heavy metal ions using methodology based on DMSPE and TXRF measurement. The suspension of GO-SH was injected into an analyzed water sample; after filtration, the GO-SH nanosheets with adsorbed metal ions were redispersed in a small volume of internal standard solution and deposited onto a quartz reflector. The high enrichment factor of 150 allows obtaining detection limits of 0.11, 0.078, 0.079, 0.064, 0.054, and 0.083 ng mL(-1) for Co(II), Ni(II), Cu(II), As(III), Cd(II), and Pb(II), respectively. Such low detection limits can be obtained using a benchtop TXRF system without cooling media and gas consumption. The method is suitable for the analysis of water, including high salinity samples difficult to analyze using other spectroscopy techniques. Moreover, GO-SH can be applied to the arsenic speciation due to its selectivity toward arsenite.
The aminosilanized graphene oxide (GO-NH2) was prepared for selective adsorption of Pb(II) ions. Graphene oxide (GO) and GO-NH2 prepared through the amino-silanization of GO with 3-aminopropyltriethoxysilane were characterized by scanning electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. The batch experiments show that GO-NH2 is characterized by high selectivity toward Pb(II) ions. Adsorption isotherms suggest that sorption of Pb(II) on GO-NH2 nanosheets is monolayer coverage, and adsorption is controlled by a chemical process involving the surface complexation of Pb(II) ions with the nitrogen-containing groups on the surface of GO-NH2. Pb(II) ions can be quantitatively adsorbed at pH 6 with maximum adsorption capacity of 96 mg g(-1). The GO-NH2 was used for selective and sensitive determination of Pb(II) ions by electrothermal atomic absorption spectrometry (ET-AAS). The preconcentration of Pb(II) ions is based on dispersive micro solid-phase extraction in which the suspended GO-NH2 is rapidly injected into analyzed water sample. Such features of GO-NH2 nanosheets as wrinkled structure, softness, flexibility, and excellent dispersibility in water allow achieving very good contact with analyzed solution, and adsorption of Pb(II) ions is very fast. The experiment shows that after separation of the solid phase, the suspension of GO-NH2 with adsorbed Pb(II) ions can be directly injected into the graphite tube and analyzed by ET-AAS. The GO-NH2 is characterized by high selectivity toward Pb(II) ions and can be successfully used for analysis of various water samples with excellent enrichment factors of 100 and detection limits of 9.4 ng L(-1).
Novel adsorbents are described for the preconcentration of chromium(VI). Graphene oxide (GO) was modified with various amino silanes containing one, two, or three nitrogen atoms in the molecule. These include 3-aminopropyltriethoxysilane (APTES), N-(3-trimethoxysilylpropyl)ethylenediamine (TMSPEDA), and N1-(3-trimethoxysilylpropyl)diethylenetriamine (TMSPDETA). The resulting GO derivatives were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and energy-dispersive X-ray fluorescence spectrometry (EDXRF). Adsorption studies show that these GO based sorbents are highly selective for Cr(VI) in the presence of Cr(III) at pH 3.5. Although the amino silanes applied in modification of GO contain different numbers of nitrogen atoms, the maximum adsorption capacities of GO derivatives are very similar (13.3–15.1 mg·g−1). Such results are in accordance with spectroscopy studies which show that the amount of amino silanes attached to GO decreases in the order of APTES > TMSPEDA > TMSPDETA. The APTES-modified GO was applied to selective and sensitive extraction of Cr(VI) ions prior to quantitation by low-power EDXRF using the Cr Kα line. The Cr(VI) ions need not be eluted from the solid adsorbent. The method has a 0.17 ng·mL−1 detection limit, and the recovery is 99.7 ± 2.2% at a spiking level of 10 ng·mL−1. The method was successfully applied to the determination of Cr(VI) in water samples.
Graphical abstractGraphene oxide adsorbents modified with various amino silanes are described for the preconcentration and speciation of trace and ultratrace levels of chromium ions.
Electronic supplementary materialThe online version of this article (10.1007/s00604-017-2640-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.