Interactions among lactic acid starter and probiotic bacteria were investigated to establish adequate combinations of strains to manufacture probiotic dairy products. For this aim, a total of 48 strains of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis, Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium spp. (eight of each) were used. The detection of bacterial interactions was carried out using the well-diffusion agar assay, and the interactions found were further characterized by growth kinetics. A variety of interactions was demonstrated. Lb. delbrueckii subsp. bulgaricus was found to be able to inhibit S. thermophilus strains. Among probiotic cultures, Lb. acidophilus was the sole species that was inhibited by the others (Lb. casei and Bifidobacterium). In general, probiotic bacteria proved to be more inhibitory towards lactic acid bacteria than vice versa since the latter did not exert any effect on the growth of the former, with some exceptions. The study of interactions by growth kinetics allowed the setting of four different kinds of behaviors between species of lactic acid starter and probiotic bacteria (stimulation, delay, complete inhibition of growth, and no effects among them). The possible interactions among the strains selected to manufacture a probiotic fermented dairy product should be taken into account when choosing the best combination/s to optimize their performance in the process and their survival in the products during cold storage.
Dissolved and colloidal substances (DCS) in the process waters of paper machine systems can interfere with the retention of fine particles, retard the drainage of water from the wet web, and generally hurt the intended functions of various polyelectrolytes that are added to the process. This review considers publications that have attempted to characterize the nature and effects of different DCS fractions, in addition to some of the ways that paper technologists have attempted to overcome related problems. The consequences of DCS in a paper machine system can be traced to their ability to form complexes with various polyelectrolytes. Such tendencies can be understood based on a relatively strong complexing ability of multivalent materials, depending on the macromolecular size and charge density. Continuing research is needed to more fully understand the different contributions to cationic demand in various paper machine systems and to find more efficient means of dealing with DCS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.