Antenatal stimulation of lung growth is a reasonable approach to treat congenital diaphragmatic hernia (CDH), a disease characterized by pulmonary hypoplasia and hypertension. Several evidences from the literature demonstrated a possible involvement of renin-angiotensin system (RAS) during fetal lung development. Thus, the expression pattern of renin, angiotensin-converting enzyme, angiotensinogen, type 1 (AT 1 ) and type 2 (AT 2 ) receptors of angiotensin II (ANGII) was assessed by immunohistochemistry throughout gestation, whereas the function of RAS in the fetal lung was evaluated using fetal rat lung explants. These were morphometrically analyzed and intracellular pathway alterations assessed by Western blot. In nitrofen-induced CDH model, pregnant rats were treated with saline or PD-123319. In pups, lung growth, protein/DNA ratio, radial saccular count, epithelial differentiation and lung maturation, vascular morphometry, right ventricular hypertrophy and overload molecular markers, gasometry and survival time were evaluated. Results demonstrated that all RAS components were constitutively expressed in the lung during gestation and that ANGII had a stimulatory effect on lung branching, mediated by AT 1 receptor, through p44/42 and Akt phosphorylation. This stimulatory effect on lung growth was mimicked by AT 2 -antagonist (PD-123319) treatment. In vivo antenatal PD-123319 treatment increased lung growth, ameliorated indirect parameters of pulmonary hypertension, improved lung function and survival time in nonventilated CDH pups, without maternal or fetal deleterious effects. Therefore, this study demonstrated a local and physiologically active RAS during lung morphogenesis. Moreover, selective inhibition of AT 2 receptor is presented as a putative antenatal therapy for CDH.
HER2 is a prognostic and predictive biomarker in breast cancer, normally assessed in tumour biopsy and used to guide treatment choices. Circulating tumour cells (CTCs) escape the primary tumour and enter the bloodstream, exhibiting great metastatic potential and representing a real-time snapshot of the tumour burden. Liquid biopsy offers the unique opportunity for low invasive sampling in cancer patients and holds the potential to provide valuable information for the clinical management of cancer patients. This study assesses the performance of the RUBYchip™, a microfluidic system for CTC capture based on cell size and deformability, and compares it with the only FDA-approved technology for CTC enumeration, CellSearch®. After optimising device performance, 30 whole blood samples from metastatic breast cancer patients were processed with both technologies. The expression of HER2 was assessed in isolated CTCs and compared to tissue biopsy. Results show that the RUBYchipTM was able to isolate CTCs with higher efficiency than CellSearch®, up to 10 times more, averaging all samples. An accurate evaluation of different CTC subpopulations, including HER2+ CTCs, was provided. Liquid biopsy through the use of the RUBYchipTM in the clinic can overcome the limitations of histological testing and evaluate HER2 status in patients in real-time, helping to tailor treatment during disease evolution.
Key Words Signal transducer and activator of transcription (STAT) • Suppressor of cytokine signaling (SOCS) • Congenital diaphragmatic hernia (CDH) • Lung development • NitrofenAbstract Background: Congenital diaphragmatic hernia (CDH) is a life-threatening developmental anomaly, intrinsically combining severe pulmonary hypoplasia and hypertension. During development, signal transducers and activators of transcription (STAT) are utilized to elicit cell growth, differentiation, and survival. Methods: We used the nitrofen-induced CDH rat model. At selected gestational time points, lungs were divided into two experimental groups, i.e., control or CDH. We performed immunohistochemistry and western blotting analysis to investigate the developmental expression profile of the complete family of STATs (STAT1-6), plus specific STATs activation (p-STAT3, p-STAT6) and regulation by SOCS (SOCS3) in normal lungs against those of diseased lungs. The normal fetal lung explants were treated with piceatannol (STAT3 inhibitor) in vitro followed by morphometrical analysis. Results: Molecular profiling of STATs during the lung development revealed distinct early and late expression signatures. Experimental CDH altered the STATs expression, activation, and regulation in the fetal lungs. In particular, STAT3 and STAT6 were persistently over-expressed and early over-activated. Piceatannol treatment dose-dependently stimulated the fetal lung growth. Conclusion: These findings suggest that STATs play an important role during normal fetal lung development and CDH pathogenesis. Moreover, functionally targeting STAT signaling modulates fetal lung growth, which highlights that STAT3 and STAT6 signaling might be promising therapeutic targets in reducing or preventing pulmonary hypoplasia in CDH.
a b s t r a c tApelin and its receptor APJ constitute a signaling pathway best recognized as an important regulator of cardiovascular homeostasis. This multifunctional peptidergic system is currently being described to be involved in embryonic events which extend into vascular, ocular and heart development. Additionally, it is highly expressed in pulmonary tissue. Therefore, the aim of this study was to investigate the role of apelinergic system during fetal lung development. Immunohistochemistry and Western blot analysis were used to characterize apelin and APJ expression levels and cellular localization in normal fetal rat lungs, at five different gestational ages as well as in the adult. Fetal rat lung explants were cultured in vitro with increasing doses of apelin. Treated lung explants were morphometrically analyzed and assessed for MAPK signaling modifications. Both components of the apelinergic system are constitutively expressed in the developing lung, with APJ exhibiting monomeric, dimeric and oligomeric forms in the pulmonary tissue. Pulmonary epithelium also displayed constitutive nuclear localization of the receptor. Fetal apelin expression is higher than adult expression. Apelin supplementation inhibitory effect on branching morphogenesis was associated with a dose dependent decrease in p38 and JNK phosphorylation. The results presented provide the first evidence of the presence of an apelinergic system operating in the developing lung. Our findings also suggest that apelin inhibits fetal lung growth by suppressing p38 and JNK signaling pathways.
BackgroundLeukemia inhibitory factor (LIF) and interleukin-6 (IL-6) are members of the family of the glycoprotein 130 (gp130)-type cytokines. These cytokines share gp130 as a common signal transducer, which explains why they show some functional redundancy. Recently, it was demonstrated that IL-6 promotes fetal lung branching. Additionally, LIF has been implicated in developmental processes of some branching organs. Thus, in this study LIF expression pattern and its effects on fetal rat lung morphogenesis were assessed.Methodology/Principal FindingsLIF and its subunit receptor LIFRα expression levels were evaluated by immunohistochemistry and western blot in fetal rat lungs of different gestational ages, ranging from 13.5 to 21.5 days post-conception. Throughout all gestational ages studied, LIF was constitutively expressed in pulmonary epithelium, whereas LIFRα was first mainly expressed in the mesenchyme, but after pseudoglandular stage it was also observed in epithelial cells. These results point to a LIF epithelium-mesenchyme cross-talk, which is known to be important for lung branching process. Regarding functional studies, fetal lung explants were cultured with increasing doses of LIF or LIF neutralizing antibodies during 4 days. MAPK, AKT, and STAT3 phosphorylation in the treated lung explants was analyzed. LIF supplementation significantly inhibited lung growth in spite of an increase in p44/42 phosphorylation. On the other hand, LIF inhibition significantly stimulated lung growth via p38 and Akt pathways.Conclusions/SignificanceThe present study describes that LIF and its subunit receptor LIFRα are constitutively expressed during fetal lung development and that they have an inhibitory physiological role on fetal lung branching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.