Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death in females worldwide. It is accepted that breast cancer is not a single disease, but instead constitutes a spectrum of tumor subtypes with distinct cellular origins, somatic changes, and etiologies. Molecular gene expression studies have divided breast cancer into several categories, i.e. basallike, ErbB2 enriched, normal breast-like (adipose tissue gene signature), luminal subtype A, luminal subtype B, and claudin-low. Chances are that as our knowledge increases, each of these types will also be subclassified. More than 66% of breast carcinomas express estrogen receptor alpha (ERa) and respond to antiestrogen therapies. Most of these ERC tumors also express progesterone receptors (PRs), the expression of which has been considered as a reliable marker of a functional ER. In this paper we will review the evidence suggesting that PRs are valid targets for breast cancer therapy. Experimental data suggest that both PR isoforms (A and B) have different roles in breast cancer cell growth, and antiprogestins have already been clinically used in patients who have failed to other therapies. We hypothesize that antiprogestin therapy may be suitable for patients with high levels of PR-A. This paper will go over the experimental evidence of our laboratory and others supporting the use of antiprogestins in selected breast cancer patients.
Background and purpose: Breast cancer, the most common cancer in women in most countries, is a highly stressful disease. Catecholamines released during stress bind to adrenoceptors and we have recently described a 2 -adrenoceptors in human breast cell lines, linked to enhanced cell proliferation. The purpose was to assess the in vivo effects of compounds acting on a 2 -adrenoceptors in a reliable model of breast cancer. Experimental approach: The expression of a 2 -adrenoceptors was confirmed by immunocytochemistry, immunofluorescence and reverse transcription-PCR in the mouse mammary tumour cell line MC4-L5. Proliferation was assessed by [3 H]thymidine incorporation and tumours were measured daily. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP digoxigenin nick-end labelling. Key results: Incubation for 2 days with a 2 -adrenoceptor agonists (clonidine and dexmedetomidine) significantly enhanced proliferation of the mouse mammary tumour cell line MC4-L5. These agonists also significantly stimulated tumour growth of the progestin-dependent tumour C4-HD even in the presence of medroxyprogesterone acetate (MPA). In every tumour tested (C4-HD, CC4-2-HD and CC4-3-HI), regardless of MPA sensitivity, clonidine significantly enhanced tumour growth in the absence of MPA. The a 2 -adrenoceptor antagonists, yohimbine and rauwolscine, completely reversed the effects of clonidine. However, the group receiving yohimbine alone showed a nonsignificant but constant increase in tumour growth, whereas rauwolscine alone diminished tumour growth significantly, behaving as a reverse agonist. In CC4-3-HI tumours, rauwolscine treatment enhanced apoptosis and diminished the mitotic index, whereas clonidine had the inverse effect. Conclusions and implications: a 2 -Adrenoceptor agonists enhanced tumour growth and rauwolscine behaved in vivo as a reverse agonist, suggesting that it may be tested for adjuvant treatment.
SARS-CoV-2 genetic diversity has the potential to impact the virus transmissibility and the escape from natural infection- or vaccine-elicited neutralizing antibodies. Here, we report the emergence of the B.1.621 lineage, considered a variant of interest (VOI) with the accumulation of several substitutions affecting the Spike protein, including the amino acid changes I95I, Y144T, Y145S and the insertion 146 N in the N-terminal domain, R346K, E484K and N501Y in the Receptor Binding Domain and P681H in the S1/S2 cleavage site of the Spike protein. The rapid increase in frequency and fixation in a relatively short time in some cities that were near the theoretical herd immunity suggests an epidemiologic impact. Further studies will be required to assess the biological and epidemiologic roles of the substitution pattern found in the B.1.621 lineage.
The PRA/PRB ratio is a prognostic and predictive factor for antiprogestin responsiveness in breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.