Many areas intended for crop production suffer from the concomitant occurrence of heavy metal pollution and elevated salinity; therefore, halophytes seem to represent a promising perspective for the bioremediation of contaminated soils. In this study, the influence of Cd treatment (0.01-10.0 mM) and salinity stress (0.4 M NaCl) on the expression of genes involved in heavy metal uptake (irt2-iron-regulated protein 2, zip4-zinc-induced protein 4), vacuolar sequestration (abcc2-ATP-binding cassette 2, cax4-cation exchanger 2 pcs1-phytochelatin synthase 1) and translocation into aerial organs (hma4-heavy metal ATPase 4) were analyzed in a soil-grown semi-halophyte Mesembryanthemum crystallinum. The upregulation of irt2 expression induced by salinity was additionally enhanced by Cd treatment. Such changes were not observed for zip4. Stressor-induced alterations in abcc2, cax4, hma4 and pcs1 expression were most pronounced in the root tissue, and the expression of cax4, hma4 and pcs1 was upregulated in response to salinity and Cd. However, the cumulative effect of both stressors, similar to the one described for irt2, was observed only in the case of pcs1. The importance of salt stress in the irt2 expression regulation mechanism is proposed. To the best of our knowledge, this study is the first to report the combined effect of salinity and heavy metal stress on genes involved in heavy metal trafficking.Plants 2020, 9, 475 2 of 15 by the occurrence of three symptoms: first, increased osmotic pressure, which results in water deficit conditions; second, accumulation of toxic ions in plant organs [4]; and third, nutritional imbalance, which influences the growth and development of challenged plants [5]. These symptoms are primarily responsible for adverse alterations in morphological, physiological and biochemical processes that disrupt the agricultural production and ecological balance of the area [3].Many areas, including arable lands, suffer from concomitant contamination with heavy metals (HMs) and salts. Recently, the accumulation of HMs in the environment has increased as a consequence of intensified human activities, such as mining, smelting and agricultural practices, including the long-term application of fertilizers, fungicides or pesticides [6]. Since HMs are non-degradable, they may persist in a contaminated substrate for decades [7]. The threat posed by heavy metals to humans has an origin in plants, which are the first link in the food chain. Plants can take up HMs from various sources, such as air, water or soil; the latter process predominates and is dependent on many factors, such as temperature, soil pH, aeration and, clearly, on the particular species involved in the accumulation process.Cadmium is one of the HMs that is particularly widely spread in the environment and has gained prominence as an important issue not only in urbanized lands, but also in less explored, rural, agricultural or wildlife areas. Cd toxicity results from altered uptake and transport of nutrient elements (Ca, Mg, P), disruption ...
Spent mineral oil-based metalworking fluids are waste products of the machining processes and contribute substantially to the global industrial pollution with petroleum oil products. Wastewaters containing oily emulsions are ecologically hazardous and thus a variety of methods have been implemented to prevent these effluents from affecting the natural environment. Most of these methods rely upon physical-chemical treatment and phase separation; however, none of them proved to be effective enough to meet tightening environmental regulations. Therefore, novel technologies need to be elaborated and there is growing interest in implementing biological treatment methods based on microbial bioremediation. In this study an oil/water emulsion obtained from a waste stream of the metal-processing industry was tested for biodegradability of its organic constituents. This liquid waste was found non-toxic to bacterial consortia and was colonized with indigenous microorganisms (approx. 10 7 cfu · cm -3). The total load of organic content was determined as a chemical oxygen demand (COD) value of 48 200 mg O2 · dm -3. Emulsion treatment was carried out using a threefold wastewater dilution and employing two variants of biostimulated aerobic bacterial communities: (1) uninoculated emulsion, where bioremediation was carried out by the autochthonous bacteria alone, and (2) wastewater samples inoculated with a ZB-01 microbial consortium which served as a source of specialized bacteria for process bioaugmentation. Biodegradation efficiency achieved in a 14-day test was monitored by measuring both the COD parameter and the concentration of high-boiling organic compounds. Both approaches yielded satisfactory results showing significant reduction of the emulsion organic fraction; however, the resultant decrease of wastewater load tended to be more efficient for the case where the process was bioaugmented with the inoculated consortium. Gas chromatography analyses coupled with mass spectrometric detection (GC-MS) confirmed high degradation yields obtained for both cases studied (58 and 71%, respectively) in a 28-day test. It is concluded that oil-based metalworking emulsions can undergo efficient biological treatment under conditions enabling aerobic bacterial proliferation and that xenobiotic biodegradation kinetics can be accelerated by bioaugmenting the process with allochthonous microbial consortia.
The common ice plant, Mesembryanthemum crystallinum L., has recently been found as a good candidate for phytoremediation of heavy-metal polluted soils. This semi-halophyte is a C3/CAM (Crassulacean acid metabolism) intermediate plant capable of tolerating extreme levels of cadmium in the soil. The aim of the work was to obtain and characterize novel, Cd-tolerant microbial strains that populate the root zone of M. crystallinum performing different types of photosynthetic metabolism and growing in Cd-contaminated substrates. The plants exhibiting either C3 or CAM photosynthesis were treated for 8 days with different CdCl2 doses to obtain final Cd concentrations ranging from 0.82 to 818 mg⋅kg–1 of soil d.w. The CAM phase was induced by highly saline conditions. After treatment, eighteen bacterial and three yeast strains were isolated from the rhizosphere and, after preliminary Cd-resistance in vitro test, five bacterial strains were selected and identified with a molecular proteomics technique. Two strains of the species Providencia rettgeri (W6 and W7) were obtained from the C3 phase and three (one Paenibacillus glucanolyticus S7 and two Rhodococcus erythropolis strains: S4 and S10) from the CAM performing plants. The isolates were further tested for Cd-resistance (treatment with either 1 mM or 10 mM CdCl2) and salinity tolerance (0.5 M NaCl) in model liquid cultures (incubation for 14 days). Providencia rettgeri W7 culture remained fully viable at 1 mM Cd, whereas Rh. erythropolis S4 and S10 together with P. glucanolyticus S7 were found to be resistant to 10 mM Cd in the presence of 0.5 M NaCl. It is suggested that the high tolerance of the common ice plant toward cadmium may result from the synergic action of the plant together with the Cd/salt-resistant strains occurring within rhizospheral microbiota. Moreover, the isolated bacteria appear as promising robust microorganisms for biotechnological applications in bio- and phytoremediation projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.