Background and Aims Diploid and polyploid Urochloa (including Brachiaria, Panicum and Megathyrsus species) C4 tropical forage grasses originating from Africa are important for food security and the environment, often being planted in marginal lands worldwide. We aimed to characterize the nature of their genomes, the repetitive DNA, and the genome composition of polyploids, leading to a model of the evolutionary pathways within the group including many apomictic species. Methods Some 362 forage grass accessions from international germplasm collections were studied, and ploidy determined using an optimized flow cytometry method. Whole-genome survey sequencing and molecular cytogenetic analysis were used to identify chromosomes and genomes in Urochloa accessions belonging to the 'brizantha' and 'humidicola' agamic complexes and U. maxima. Key Results Genome structures are complex and variable, with multiple ploidies and genome compositions within the species, and no clear geographical patterns. Sequence analysis of nine diploid and polyploid accessions enabled identification of abundant genome-specific repetitive DNA motifs. In situ hybridization with a combination of repetitive DNA and genomic DNA probes, identified evolutionary divergence and allowed us to discriminate the different genomes present in polyploids. Conclusions We suggest a new coherent nomenclature for the genomes present. We develop a model of evolution at the whole-genome level in diploid and polyploid accessions showing processes of grass evolution. We support the retention of narrow species concepts for U. brizantha, U. decumbens, and U. ruziziensis, and do not consider diploids and polyploids of single species as cytotypes. The results and model will be valuable in making rational choices of parents for new hybrids, assist in use of the germplasm for breeding and selection of Urochloa with improved sustainability and agronomic potential, and will assist in measuring and conserving biodiversity in grasslands.
This study analysed cytogenetic events occurring in the syncytial endosperm of the Avena magna H. C. Murphy & Terrell × Avena longiglumis Durieu amphiploid, which is a product of two wild species having different genomes. Selection through the elimination of chromosomes and their fragments, including those translocated, decreased the level of ploidy in the endosperm below the expected 3n, leading to the modal number close to 2n. During intergenomic translocations, fragments of the heterochromatin-rich C-genome were transferred to the D and Al genomes. Terminal and non-reciprocal exchanges dominated, whereas other types of translocations, including microexchanges, were less common. Using two probes and by counterstaining with DAPI, the A. longiglumis and the rare exchanges between the D and Al genomes were detected by GISH. The large discontinuity in the probe labelling in the C chromosomes demonstrated inequality in the distribution of repetitive sequences along the chromosome and probable intragenomic rearrangements. In the nucleus, the spatial arrangement of genomes was non-random and showed a sectorial-concentric pattern, which can vary during the cell cycle, especially in the less stable tissue like the hybrid endosperm.
Key messageThe development of oat endosperm is modified by chromatin and nuclei elimination, intrusive growth of cell walls, and polyploidisation of cell clones. The last event is correlated with somatic crossing-over.AbstractGrass endosperm is a variable tissue in terms of its cytogenetics and development. Free-nuclear syncytium and starchy and aleurone endosperm were the main focus of the research. These were studied in oat amphiploids (4x, 6x, and 8x) and parental species (2x, 4x, and 6x). What the levels of cytogenetic disorders and developmental anomalies in species versus hybrids are, and, what the factors are determining phenotypes of both tissue components, are open questions for oats. Chromosome bridges and micronuclei are the main cytogenetic disorders showing the elimination of parts of genomes. Bridges are formed by the AT-heterochromatin-rich and -free ends of chromosomes. In the starchy tissue, various sectors are separated structurally due to the elongation or intrusive growth of aleurone cells. The development of the aleurone layer is highly disturbed locally due to the amplification of aleurone cell divisions. Changes related to their structure and metabolism occur in the aleurone cells, for example, clones of small versus large aleurone cells. Somatic crossing-over (SCO) is expressed in clones of large polyploidised cells (r = 0.80***), giving rise to new aleurone phenotypes. The multivariate description of the endosperm instability showed that endospermal disorders were more frequent in amphiploids than in the oat species. Avena strigosa and the amphiploid A. fatua × A. sterilis appeared to be extreme units in an ordination space. Nuclear DNA elimination, periclinal and multidirectional cytokineses, polyploidisation, intrusive growth, and SCO appeared to be important factors determining oat endospermal variations.
Background and Aims: Diploid and polyploid Urochloa (including Brachiaria, Panicum and Megathyrsus species) C4 tropical forage grasses originating from Africa and now planted worldwide are important for food security and the environment, often being planted in marginal lands. We aimed to characterize the nature of their genomes, the repetitive DNA, and the genome composition of polyploids, leading to a model of the evolutionary pathways within the group including many apomictic species. Methods: Some 362 forage grass accessions from international germplasm collections were studied, and ploidy determined using an optimized flow cytometry method. Whole-genome survey sequencing and molecular cytogenetic analysis with in situ hybridization to chromosomes were used to identify chromosomes and genomes in Urochloa accessions belonging to the different agamic complexes. Key Results: Genome structures are complex and variable, with multiple ploidies and genome compositions within the species, and no clear geographical patterns. Sequence analysis of nine diploid and polyploid accessions enabled identification of abundant genome-specific repetitive DNA motifs. In situ hybridization with a combination of repetitive DNA and genomic DNA probes, identified evolutionary divergence and allowed us to discriminate the different genomes present in polyploids. Conclusions: We suggest a new coherent nomenclature for the genomes present. We develop a model of evolution at the whole-genome level in diploid and polyploid accessions showing processes of grass evolution. We support the retention of narrow species concepts for U. brizantha, U. decumbens, and U. ruziziensis. The results and model will be valuable in making rational choices of parents for new hybrids, assist in use of the germplasm for breeding and selection of Urochloa with improved sustainability and agronomic potential, and will assist in measuring and conserving biodiversity in grasslands.
Urochloa (including Brachiaria, Megathyrus and some Panicum) tropical grasses are native to Africa and are now, after selection and breeding, planted worldwide, particularly in South America, as important forages with huge potential for further sustainable improvement and conservation of grasslands. We aimed to develop an optimized approach to determine ploidy of germplasm collection of this tropical forage grass group using dried leaf material, including approaches to collect, dry and preserve plant samples for flow cytometry analysis. Our methods enable robust identification of ploidy levels (coefficient of variation of G0/G1 peaks, CV, typically <5%). Ploidy of some 348 forage grass accessions (ploidy range from 2x to 9x), from international genetic resource collections, showing variation in basic chromosome numbers and reproduction modes (apomixis and sexual), were determined using our defined standard protocol. Two major Urochloa agamic complexes are used in the current breeding programs at CIAT and EMBRAPA: the ’brizantha’ and ’humidicola’ agamic complexes are variable, with multiple ploidy levels. Some U. brizantha accessions have odd level of ploidy (5x), and the relative differences in fluorescence values of the peak positions between adjacent cytotypes is reduced, thus more precise examination of this species is required. Ploidy measurement of U. humidicola revealed aneuploidy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.