Silica particles induce lung inflammation and fibrosis. Here we show that stimulator of interferon genes (STING) is essential for silica-induced lung inflammation. In mice, silica induces lung cell death and self-dsDNA release in the bronchoalveolar space that activates STING pathway. Degradation of extracellular self-dsDNA by DNase I inhibits silica-induced STING activation and the downstream type I IFN response. Patients with silicosis have increased circulating dsDNA and CXCL10 in sputum, and patients with fibrotic interstitial lung disease display STING activation and CXCL10 in the lung. In vitro, while mitochondrial dsDNA is sensed by cGAS-STING in dendritic cells, in macrophages extracellular dsDNA activates STING independent of cGAS after silica exposure. These results reveal an essential function of STING-mediated self-dsDNA sensing after silica exposure, and identify DNase I as a potential therapy for silica-induced lung inflammation.
The cysteine protease caspase-1 (Casp-1) contributes to innate immunity through the assembly of NLRP3, NLRC4, AIM2, and NLRP6 inflammasomes. Here we ask whether caspase-1 activation plays a regulatory role in house dust mite (HDM)-induced experimental allergic airway inflammation. We report enhanced airway inflammation in caspase-1-deficient mice exposed to HDM with a marked eosinophil recruitment, increased expression of IL-4, IL-5, IL-13, as well as full-length and bioactive IL-33. Furthermore, mice deficient for NLRP3 failed to control eosinophil influx in the airways and displayed augmented Th2 cytokine and chemokine levels, suggesting that the NLPR3 inflammasome complex controls HDM-induced inflammation. IL-33 neutralization by administration of soluble ST2 receptor inhibited the enhanced allergic inflammation, while administration of recombinant IL-33 during challenge phase enhanced allergic inflammation in caspase-1-deficient mice. Therefore, we show that caspase-1, NLRP3, and ASC, but not NLRC4, contribute to the upregulation of allergic lung inflammation. Moreover, we cannot exclude an effect of caspase-11, because caspase-1-deficient mice are deficient for both caspases. Mechanistically, absence of caspase-1 is associated with increased expression of IL-33, uric acid, and spleen tyrosine kinase (Syk) production. This study highlights a critical role of caspase-1 activation and NLPR3/ASC inflammasome complex in the down-modulation of IL-33 in vivo and in vitro, thereby regulating Th2 response in HDM-induced allergic lung inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.