To assess evolutionary processes in deep time, it is essential to understand the roles of development and environment, both recorded through the morphological variability of fossil assemblages. Thanks to their great abundance and the high temporal resolution of their fossil record, conodont elements are ideal to address this issue. In this paper, we present the first quantitative study of a Carnian–Norian (Late Triassic) assemblage of closely related P1 conodont elements. Using geometric morphometrics (landmarks, sliding landmarks, and elliptic Fourier analysis), we explore the main axes of phenotypic variation and relate them to classically used taxonomic characters. We show that some important taxonomic features follow laws of covariation, hence highlighting developmental constraints. Furthermore, the intraspecific variation within all considered species, either Carnian or Norian forms, is similarly restricted, emphasizing, for the first time in conodont P1 elements, a common line of least resistance to evolution, which means that similar intrinsic (developmental) factors were acting on these taxa and likely biased the evolutionary trajectories of all these taxa in a similar way. Because the evolution between Carnian and Norian forms is known to have followed a trajectory that is significantly different from the line of least resistance, strong extrinsic pressures, such as environmental disturbances, were probably at play around the Carnian/Norian boundary to counteract the effects of these intrinsic, developmental constraints.
The Early Ordovician is a key interval for our understanding of the evolution of life on Earth as it lays at the transition between the Cambrian Explosion and the Ordovician Radiation and because the fossil record of the late Cambrian is scarce. In this study, assembly processes of Early Ordovician trilobite and echinoderm communities from the Central Anti-Atlas (Morocco), the Montagne Noire (France), and the Cordillera Oriental (Argentina) are explored. The results show that dispersal increased diachronically in trilobite communities during the Early Ordovician. Dispersal did not increase for echinoderms. Dispersal was most probably proximally triggered by the planktic revolution, the fall in seawater temperatures, changes in oceanic circulation, with an overall control by tectonic frameworks and phylogenetic constraints. The diachronous increase in dispersal within trilobite communities in the Early Ordovician highlights the complexity of ecosystem structuring during the early stages of the Ordovician Radiation. As Early Ordovician regional dispersal was followed by well-documented continental dispersal in the Middle/Late Ordovician, it is possible to consider that alongside a global increase in taxonomic richness, the Ordovician Radiation is also characterized by a gradual increase in dispersal.
Taxonomy is the very first step of most biodiversity studies, but how confident can we be in the taxa delineation? One may hypothesize that the more abundant the material, the more accurate the description of morphological variability and hence the better the taxonomic delineation. Yet, as we shall see, in the case of numerous transitional forms, this hypothesis may prove wrong. Similarly to rarefaction curves that assess the degree of knowledge on taxonomic diversity through sampling effort, we aim to test the impact of sampling effort on species delineation by subsampling a given assemblage. To do so, we use an abundant and morphologically diverse conodont fossil assemblage from the Smithian of Oman. We first recognize four well established morphospecies but about 80% of the specimens are transitional forms. We quantify the diagnostic characters in a sample of 159 P1 elements using geometric morphometrics and assess, via gradually subsampling the assemblage, the number of morphometric groups (i.e. morphospecies) using ordination and clustering analyses. Four morphospecies were detected when less than 20% of the specimens were considered. The number of detected clusters dropped to two when including more than 30% of the specimens. Such influence of sampling effort on species delineation highlights the complexity of taxonomic work, especially when transitional forms are more abundant than typical specimens. These results should encourage researchers to extensively illustrate, measure and quantitatively compare their material to better constrain the morphological variability and delineation of taxa.
Island birds that were victims of anthropic extinctions were often more specialist species, having evolved their most distinctive features in isolation, making the study of fossil insular birds most interesting. Here we studied a fossil cranium of the ‘giant’ extinct scops owl Otus murivorus from Rodrigues Island (Mascarene Islands, southwestern Indian Ocean), to determine any potential unique characters. The fossil and extant strigids were imaged through X-ray microtomography, providing 3D views of external and internal (endocast, inner ear) cranial structures. Geometric morphometrics and analyses of traditional measurements yielded new information about the Rodrigues owl’s evolution and ecology. Otus murivorus exhibits a 2-tier “lag behind” phenomenon for cranium and brain evolution, both being proportionately small relative to increased body size. It also had a much more developed olfactory bulb than congeners, indicating an unexpectedly developed olfactory sense, suggesting a partial food scavenging habit. In addition, O. murivorus had the eyes placed more laterally than O. sunia , the species from which it was derived, probably a side effect of a small brain; rather terrestrial habits; probably relatively fearless behavior; and a less vertical posture (head less upright) than other owls (this in part an allometric effect of size increase). These evolutionary features, added to gigantism and wing reduction, make the extinct Rodrigues owl’s evolution remarkable, and with multiple causes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.