ab s t r ac tReverse electrodialysis is a conversion technique to obtain electricity from salinity gradients. Over the past few years, the performance of reverse electrodialysis on laboratory scale has improved considerably. In this paper, we discuss the challenges we are still facing concerning the economic and technological feasibility and the developing path of reverse electrodialysis. We focus on the following issues: (i) the development of low-cost membranes, (ii) pre-treatment in relation to stack design and operation, and (iii) the economics of reverse electrodialysis. For membranes, the challenge is to increase availability (>km 2 /y) at reduced cost (<2 €/m 2 ). The membranes should be manufactured at high speed to meet this challenge. For pre-treatment, a capital-extensive microscreen filter with 50 μm pores was selected and tested. Such a straightforward pre-treatment is only sufficient given the fact that the reverse electrodialysis stack was redesigned towards a more robust spacer-free system. For the economic feasibility, a 200 kW repetitive unit was designed. The cost price is estimated to be less than 0.08 €/kWh (excluding any subsidy or compensation), comparable with that of wind energy. The feasibility of the technology should be proved with a scaled-up system under practical conditions. The intended pilot facility at the Afsluitdijk (The Netherlands) will be an essential step towards implementation of reverse electrodialysis for power generation.
A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na 3 H(CO 3 ) 2 3 2H 2 O) was injected before the ESP unit to control the emission of sulfur trioxide (SO 3 ). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. † Progress in Coal-Based Energy and Fuel Production.
This research studies the adsorption of gas-phase As 2 O 3 by CaO, Fe 2 O 3 and Al 2 O 3 , using a fixed-bed reactor with an arsenic continuous generation device. The adsorption of gas-phase arsenic on CaO and Fe 2 O 3 is mainly chemical adsorption at 600−900 °C. The adsorption quantity and efficiency decreases as the temperature increases. Iron(III) oxide has the best arsenic adsorption ability, followed by calcium oxide and then aluminum oxide. The incoming arsenic concentration was varied, from 4.5 × 10 −6 v/v to 13.5 × 10 −6 v/v, to determine if this had any effect on adsorption, which revealed that the adsorbent did not become saturated under the experimental conditions used. The adsorption efficiency for each adsorbent was affected by the adsorption temperature, and the same adsorption efficiency was achieved regardless of the inlet arsenic concentration. Intrinsic reaction kinetics of CaO and Fe 2 O 3 with arsenic oxide was studied. The activation energies of CaO and Fe 2 O 3 are 12.17 kJ/mol and 25.99 kJ/mol, respectively. The reaction orders of Fe 2 O 3 and CaO are ∼1.1 and 0.8, respectively.
Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150 degrees C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. This was also true when limestone was added while cofiring coal and chicken waste because the gaseous chlorine was reduced in the freeboard of the fluidized bed combustor, where the temperature was generally below 650 degrees C without addition of the secondary air. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650 degrees C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. This study identified the important impacts of temperature profile and oxides of alkali metal (alkali earth metal) on mercury emissions during cofiring in the fluidized bed combustor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.