OBJECTIVE To review and critically appraise published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at increased risk of becoming infected with covid-19 or being admitted to hospital with the disease. DESIGNLiving systematic review and critical appraisal. DATA SOURCESPubMed and Embase through Ovid, Arxiv, medRxiv, and bioRxiv up to 7 April 2020.Cite this as: BMJ 2020;369:m1328 http://dx.
ObjeCtiveTo provide an overview of prediction models for risk of cardiovascular disease (CVD) in the general population.Design Systematic review. Data sOurCesMedline and Embase until June 2013.eligibility Criteria fOr stuDy seleCtiOn Studies describing the development or external validation of a multivariable model for predicting CVD risk in the general population. results 9965 references were screened, of which 212 articles were included in the review, describing the development of 363 prediction models and 473 external validations. Most models were developed in Europe (n=167, 46%), predicted risk of fatal or non-fatal coronary heart disease (n=118, 33%) over a 10 year period (n=209, 58%). The most common predictors were smoking (n=325, 90%) and age (n=321, 88%), and most models were sex specific (n=250, 69%). Substantial heterogeneity in predictor and outcome definitions was observed between models, and important clinical and methodological information were often missing. The prediction horizon was not specified for 49 models (13%), and for 92 (25%) crucial information was missing to enable the model to be used for individual risk prediction. Only 132 developed models (36%) were externally validated and only 70 (19%) by independent investigators. Model performance was heterogeneous and measures such as discrimination and calibration were reported for only 65% and 58% of the external validations, respectively. COnClusiOnsThere is an excess of models predicting incident CVD in the general population. The usefulness of most of the models remains unclear owing to methodological shortcomings, incomplete presentation, and lack of external validation and model impact studies. Rather than developing yet another similar CVD risk prediction model, in this era of large datasets, future research should focus on externally validating and comparing head-to-head promising CVD risk models that already exist, on tailoring or even combining these models to local settings, and investigating whether these models can be extended by addition of new predictors. IntroductionCardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide, 1 accounting for approximately one third of all deaths. 2 Prevention of CVD requires timely identification of people at increased risk to target effective dietary, lifestyle, or drug interventions. Over the past two decades, numerous prediction models have been developed, which mathematically combine multiple predictors to estimate the risk of developing CVD-for example, the Framingham, 3-5 SCORE, 6 and QRISK 7-9 models. Some of these prediction models are included in clinical guidelines for therapeutic management 10 11 and are increasingly advocated by health policymakers. In the United Kingdom, electronic health patient record systems now have QRISK2 embedded to calculate 10 year CVD risk.Several reviews have shown that there is an abundance of prediction models for a wide range of CVD outcomes. 12-14 However, the most comprehensive review 12 includes models published ...
Background: The Framingham risk models and pooled cohort equations (PCE) are widely used and advocated in guidelines for predicting 10-year risk of developing coronary heart disease (CHD) and cardiovascular disease (CVD) in the general population. Over the past few decades, these models have been extensively validated within different populations, which provided mounting evidence that local tailoring is often necessary to obtain accurate predictions. The objective is to systematically review and summarize the predictive performance of three widely advocated cardiovascular risk prediction models (Framingham Wilson 1998, Framingham ATP III 2002 and PCE 2013 in men and women separately, to assess the generalizability of performance across different subgroups and geographical regions, and to determine sources of heterogeneity in the findings across studies. Methods: A search was performed in October 2017 to identify studies investigating the predictive performance of the aforementioned models. Studies were included if they externally validated one or more of the original models in the general population for the same outcome as the original model. We assessed risk of bias for each validation and extracted data on population characteristics and model performance. Performance estimates (observed versus expected (OE) ratio and c-statistic) were summarized using a random effects models and sources of heterogeneity were explored with meta-regression. Results: The search identified 1585 studies, of which 38 were included, describing a total of 112 external validations. Results indicate that, on average, all models overestimate the 10-year risk of CHD and CVD (pooled OE ratio ranged from 0.58 (95% CI 0.43-0.73; Wilson men) to 0.79 (95% CI 0.60-0.97; ATP III women)). Overestimation was most pronounced for high-risk individuals and European populations. Further, discriminative performance was better in women for all models. There was considerable heterogeneity in the c-statistic between studies, likely due to differences in population characteristics. Conclusions: The Framingham Wilson, ATP III and PCE discriminate comparably well but all overestimate the risk of developing CVD, especially in higher risk populations. Because the extent of miscalibration substantially varied across settings, we highly recommend that researchers further explore reasons for overprediction and that the models be updated for specific populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.