Clostridium difficile is the leading cause of infectious diarrhea in hospitals worldwide, because of its virulence, spore-forming ability and persistence1,2. C. difficile-associated diseases (CDAD) are induced by antibiotic treatment or disruption of the normal gastrointestinal flora3,4. Recently, morbidity and mortality resulting from CDAD have increased significantly due to changes in the virulence of the causative strains and antibiotic usage patterns1,2,5,6. Since 2002, epidemic toxinotype III NAP1/027 strains1,2, which produce high levels of the major virulence factors, toxin A and toxin B, have emerged. These toxins have 63% amino acid sequence similarity7 and are members of the large clostridial glucosylating toxin family, which are monoglucosyltransferases that are proinflammatory, cytotoxic and enterotoxic in the human colon8–10. Inside host cells, both toxins catalyze the transfer of glucose onto the Rho family of GTPases, leading to cell death8, 11. However, the role of these toxins in the context of a C. difficile infection is unknown. Here we describe the construction of isogenic tcdA and tcdB mutants of a virulent C. difficile strain and their use in the hamster disease model to show that toxin B is a key virulence determinant. Previous studies showed that purified toxin A alone can induce most of the pathology observed following infection of hamsters with C. difficile8,9, 12 and that toxin B is not toxic in animals unless it is co-administered with toxin A, suggesting that the toxins act synergistically12. Our work provides evidence that toxin B, not toxin A, is essential for virulence, which represents a major paradigm shift. Furthermore, it is clear that the importance of these toxins in the context of infection cannot be predicted exclusively from studies using purified toxins, reinforcing the importance of using the natural infection process to dissect the role of toxins in disease.
Clostridium difficile is a leading cause of antibiotic-associated diarrhea, a significant animal pathogen, and a worldwide public health burden. Most disease-causing strains secrete two exotoxins, TcdA and TcdB, which are considered to be the primary virulence factors. Understanding the role that these toxins play in disease is essential for the rational design of urgently needed new therapeutics. However, their relative contributions to disease remain contentious. Using three different animal models, we show that TcdA+ TcdB− mutants are attenuated in virulence in comparison to the wild-type (TcdA+ TcdB+) strain, whereas TcdA− TcdB+ mutants are fully virulent. We also show for the first time that TcdB alone is associated with both severe localized intestinal damage and systemic organ damage, suggesting that this toxin might be responsible for the onset of multiple organ dysfunction syndrome (MODS), a poorly characterized but often fatal complication of C. difficile infection (CDI). Finally, we show that TcdB is the primary factor responsible for inducing the in vivo host innate immune and inflammatory responses. Surprisingly, the animal infection model used was found to profoundly influence disease outcomes, a finding which has important ramifications for the validation of new therapeutics and future disease pathogenesis studies. Overall, our results show unequivocally that TcdB is the major virulence factor of C. difficile and provide new insights into the host response to C. difficile during infection. The results also highlight the critical nature of using appropriate and, when possible, multiple animal infection models when studying bacterial virulence mechanisms.
TxeR, a sigma factor that directs Clostridium difficile RNA polymerase to recognize the promoters of two major toxin genes, was shown to stimulate its own synthesis. Whether expressed in C. difficile, Clostridium perfringens, or Escherichia coli, TxeR stimulated transcription of fusions of the txeR promoter region to reporter genes. As is the case for the tox genes, txeR expression was responsive to the cellular growth phase and the constituents of the medium. That is, the level of expression in broth culture was low during the exponential growth phase, but rapidly increased as cells approached the stationary phase. In the presence of excess glucose, expression from the txeR promoter was repressed. The results support a model for toxin gene expression in which synthesis of TxeR is induced by specific environmental signals. The increased level of TxeR then permits high-level expression of the toxin genes.
Nosocomial infections are increasingly being recognised as a major patient safety issue. The modern hospital environment and associated health care practices have provided a niche for the rapid evolution of microbial pathogens that are well adapted to surviving and proliferating in this setting, after which they can infect susceptible patients. This is clearly the case for bacterial pathogens such as Methicillin Resistant Staphylococcus aureus (MRSA) and Vancomycin Resistant Enterococcus (VRE) species, both of which have acquired resistance to antimicrobial agents as well as enhanced survival and virulence properties that present serious therapeutic dilemmas for treating physicians. It has recently become apparent that the spore-forming bacterium Clostridium difficile also falls within this category. Since 2000, there has been a striking increase in C. difficile nosocomial infections worldwide, predominantly due to the emergence of epidemic or hypervirulent isolates that appear to possess extended antibiotic resistance and virulence properties. Various hypotheses have been proposed for the emergence of these strains, and for their persistence and increased virulence, but supportive experimental data are lacking. Here we describe a genetic approach using isogenic strains to identify a factor linked to the development of hypervirulence in C. difficile. This study provides evidence that a naturally occurring mutation in a negative regulator of toxin production, the anti-sigma factor TcdC, is an important factor in the development of hypervirulence in epidemic C. difficile isolates, presumably because the mutation leads to significantly increased toxin production, a contentious hypothesis until now. These results have important implications for C. difficile pathogenesis and virulence since they suggest that strains carrying a similar mutation have the inherent potential to develop a hypervirulent phenotype.
Clostridium difficile binary toxin (CDT) is an actin-specific ADP-ribosyltransferase that is produced by various C. difficile isolates, including the "hypervirulent" NAP1/027 epidemic strains. In contrast to the two major toxins from C. difficile, toxin A and toxin B, little is known about the role of CDT in virulence or how C. difficile regulates its production. In this study we have shown that in addition to the cdtA and cdtB toxin structural genes, a functional cdt locus contains a third gene, here designated cdtR, which is predicted to encode a response regulator. By introducing functional binary toxin genes into cdtR ؉ and cdtR-negative strains of C. difficile, it was established that the CdtR protein was required for optimal expression of binary toxin. Significantly increased expression of functional binary toxin was observed in the presence of a functional cdtR gene; an internal deletion within cdtR resulted in a reduction in binary toxin production to basal levels. Strains that did not carry intact cdtAB genes or cdtAB pseudogenes also did not have cdtR, with the entire cdt locus, or CdtLoc, being replaced by a conserved 68-bp sequence. These studies have shown for the first time that binary toxin production is subject to strict regulatory control by the response regulator CdtR, which is a member of the LytTR family of response regulators and is related to the AgrA protein from Staphylococcus aureus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.