Revised version for the Electronic Journal of StatisticsInternational audienceWhen the study variable is functional and storage capacities are limited or transmission costs are high, selecting with survey sampling techniques a small fraction of the observations is an interesting alternative to signal compression techniques, particularly when the goal is the estimation of simple quantities such as means or totals. We extend, in this functional framework, model-assisted estimators with linear regression models that can take account of auxiliary variables whose totals over the population are known. We first show, under weak hypotheses on the sampling design and the regularity of the trajectories, that the estimator of the mean function as well as its variance estimator are uniformly consistent. Then, under additional assumptions, we prove a functional central limit theorem and we assess rigorously a fast technique based on simulations of Gaussian processes which is employed to build asymptotic confidence bands. The accuracy of the variance function estimator is evaluated on a real dataset of sampled electricity consumption curves measured every half an hour over a period of one week
For fixed size sampling designs with high entropy, it is well known that the variance of the Horvitz-Thompson estimator can be approximated by the Hájek formula. The interest of this asymptotic variance approximation is that it only involves the first order inclusion probabilities of the statistical units. We extend this variance formula when the variable under study is functional, and we prove, under general conditions on the regularity of the individual trajectories and the sampling design, that we can get a uniformly convergent estimator of the variance function of the Horvitz-Thompson estimator of the mean function. Rates of convergence to the true variance function are given for the rejective sampling. We deduce, under conditions on the entropy of the sampling design, that it is possible to build confidence bands whose coverage is asymptotically the desired one via simulation of Gaussian processes with variance function given by the Hájek formula. Finally, the accuracy of the proposed variance estimator is evaluated on samples of electricity consumption data measured every half an hour over a period of 1 week.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.