Understanding how tumors develop resistance to chemotherapy is a major issue in oncology. When treated with temozolomide (TMZ), an oral alkylating chemotherapy drug, most low-grade gliomas (LGG) show an initial volume decrease but this effect is rarely long lasting. In addition, it has been suggested that TMZ may drive tumor progression in a subset of patients as a result of acquired resistance. Using longitudinal tumor size measurements from 121 patients, the aim of this study was to develop a semi-mechanistic mathematical model to determine whether resistance of LGG to TMZ was more likely to result from primary and/or from chemotherapy-induced acquired resistance that may contribute to tumor progression. We applied the model to a series of patients treated upfront with TMZ (n = 109) or PCV (procarbazine, CCNU, vincristine) chemotherapy (n = 12) and used a population mixture approach to classify patients according to the mechanism of resistance most likely to explain individual tumor growth dynamics. Our modeling results predicted acquired resistance in 51% of LGG treated with TMZ. In agreement with the different biological effects of nitrosoureas, none of the patients treated with PCV were classified in the acquired resistance group. Consistent with the mutational analysis of recurrent LGG, analysis of growth dynamics using mathematical modeling suggested that in a subset of patients, TMZ might paradoxically contribute to tumor progression as a result of chemotherapy-induced resistance. Identification of patients at risk of developing acquired resistance is warranted to better define the role of TMZ in LGG.
Both molecular profiling of tumors and longitudinal tumor size data modeling are relevant strategies to predict cancer patients' response to treatment. Herein we propose a model of tumor growth inhibition integrating a tumor's genetic characteristics (p53 mutation and 1p/19q codeletion) that successfully describes the time course of tumor size in patients with low‐grade gliomas treated with first‐line temozolomide chemotherapy. The model captures potential tumor progression under chemotherapy by accounting for the emergence of tissue resistance to treatment following prolonged exposure to temozolomide. Using information on individual tumors' genetic characteristics, in addition to early tumor size measurements, the model was able to predict the duration and magnitude of response, especially in those patients in whom repeated assessment of tumor response was obtained during the first 3 months of treatment. Combining longitudinal tumor size quantitative modeling with a tumor''s genetic characterization appears as a promising strategy to personalize treatments in patients with low‐grade gliomas.
Background. We previously developed a mathematical model capturing tumor size dynamics of adult low-grade gliomas (LGGs) before and after treatment either with PCV (Procarbazine, CCNU, and Vincristine) chemotherapy alone or with radiotherapy (RT) alone. Objective. The aim of the present study was to present how the model could be used as a simulation tool to suggest more effective therapeutic strategies in LGGs. Simulations were performed to identify schedule modifications that might improve PCV chemotherapy efficacy. Methods. Virtual populations of LGG patients were generated on the basis of previously evaluated parameter distributions. Monte Carlo simulations were performed to compare treatment efficacy across in silico clinical trials. Results. Simulations predicted that RT plus PCV would be more effective in terms of duration of response than RT alone. Additional simulations suggested that, in patients treated with PCV chemotherapy, increasing the interval between treatment cycles up to 6 months from the standard 6 weeks can increase treatment efficacy. The predicted median duration of response was 4.3 years in LGGs treated with PCV cycles given every 6 months versus 3.1 years in patients treated with the classical regimen. Conclusion. The present study suggests that, in LGGs, mathematical modeling could facilitate clinical research by helping to identify, in silico, potentially more effective therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.