The molecular mechanisms that underlie the neurological manifestations of patients with inherited diseases of vitamin B12 (cobalamin) metabolism remain to date obscure. We observed transcriptomic changes of genes involved in RNA metabolism and endoplasmic reticulum stress in a neuronal cell model with impaired cobalamin metabolism. These changes were related to the subcellular mislocalization of several RNA binding proteins, including the ELAVL1/HuR protein implicated in neuronal stress, in this cell model and in patient fibroblasts with inborn errors of cobalamin metabolism and Cd320 knockout mice. The decreased interaction of ELAVL1/HuR with the CRM1/exportin protein of the nuclear pore complex and its subsequent mislocalization resulted from hypomethylation at R-217 produced by decreased S-adenosylmethionine and protein methyl transferase CARM1 and dephosphorylation at S221 by increased protein phosphatase PP2A. The mislocalization of ELAVL1/HuR triggered the decreased expression of SIRT1 deacetylase and genes involved in brain development, neuroplasticity, myelin formation, and brain aging. The mislocalization was reversible upon treatment with siPpp2ca, cobalamin, S-adenosylmethionine, or PP2A inhibitor okadaic acid. In conclusion, our data highlight the key role of the disruption of ELAVL1/HuR nuclear export, with genomic changes consistent with the effects of inborn errors of Cbl metabolisms on brain development, neuroplasticity and myelin formation.
Aminoacyl‐tRNA synthetases (aaRS) are ubiquitously expressed enzymes responsible for ligating amino acids to their cognate tRNA molecules through an aminoacylation reaction. The resulting aminoacyl‐tRNA is delivered to ribosome elongation factors to participate in protein synthesis. Seryl‐tRNA synthetase (SARS1) is one of the cytosolic aaRSs and catalyzes serine attachment to tRNASer.
SARS1 deficiency has already been associated with moderate intellectual disability, ataxia, muscle weakness, and seizure in one family. We describe here a new clinical presentation including developmental delay, central deafness, cardiomyopathy, and metabolic decompensation during fever leading to death, in a consanguineous Turkish family, with biallelic variants (c.638G>T, p.(Arg213Leu)) in SARS1. This missense variant was shown to lead to protein instability, resulting in reduced protein level and enzymatic activity.
Our results describe a new clinical entity and expand the clinical and mutational spectrum of SARS1 and aaRS deficiencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.