Because it drives the compromise between resolution and penetration, the diffraction limit has long represented an unreachable summit to conquer in ultrasound imaging. Within a few years after the introduction of optical localization microscopy, we proposed its acoustic alter ego that exploits the micrometric localization of microbubble contrast agents to reconstruct the finest vessels in the body in-depth. Various groups now working on the subject are optimizing the localization precision, microbubble separation, acquisition time, tracking, and velocimetry to improve the capacity of ultrasound localization microscopy (ULM) to detect and distinguish vessels much smaller than the wavelength. It has since been used in vivo in the brain, the kidney, and tumors. In the clinic, ULM is bound to improve drastically our vision of the microvasculature, which could revolutionize the diagnosis of cancer, arteriosclerosis, stroke, and diabetes.
Three scattering models were examined for characterizing ex vivo canine livers and HT29 mouse tumors in the 10-38- and the 15-42-MHz frequency bandwidth, respectively. The spherical Gaussian model (SGM) and the fluid sphere model (FSM) that were examined are suitable for dealing with sparse media, whereas the structure factor model (SFM) is adapted for characterizing concentrated media. For the canine livers, the scatterer radius and the acoustic concentration estimated with the three models were similar and matched well the nuclear structures obtained from histological analysis (with relative errors less than 7%). These results show that the livers could be considered as a diluted medium and that the nuclei in liver could be a dominant source of scattering. For the homogeneous mouse tumors, containing mostly viable HT29 cells, scatterer radius and volume fraction estimated with the SFM showed good agreement with the whole cell structures obtained from histological analysis (with relative errors less than 15%), whereas the sparse models (the SGM and the FSM) gave no consistent quantitative ultrasound parameters. This suggests that the viable HT29 cell areas have densely packed cellular content and that the whole HT29 cell could be responsible for scattering. For the heterogeneous tumors, the hyperechogenic zones observed in the B-mode images were linked to the presence of small necrotic areas surrounded by viable HT29 cells. Comparison between sparse and concentrated models shows that these hyperechogenic zones could be considered as a concentrated medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.