Posttranslational histone modifications are believed to allow the epigenetic transmission of distinct chromatin states, independently of associated DNA sequences. Histone H3 lysine 9 (H3K9) methylation is essential for heterochromatin formation; however, a demonstration of its epigenetic heritability is lacking. Fission yeast has a single H3K9 methyltransferase, Clr4, that directs all H3K9 methylation and heterochromatin. Using releasable tethered Clr4 reveals that an active process rapidly erases H3K9 methylation from tethering sites in wild-type cells. However, inactivation of the putative histone demethylase Epe1 allows H3K9 methylation and silent chromatin maintenance at the tethering site through many mitotic divisions, and transgenerationally through meiosis, after release of tethered Clr4. Thus, H3K9 methylation is a heritable epigenetic mark whose transmission is usually countered by its active removal, which prevents the unauthorized inheritance of heterochromatin.
Epigenetically regulated heterochromatin domains govern essential cellular activities. A key feature of heterochromatin domains is the presence of hypoacetylated nucleosomes, which are methylated on lysine 9 of histone H3 (H3K9me). Here, we investigate the requirements for establishment, spreading and maintenance of heterochromatin using fission yeast centromeres as a paradigm. We show that establishment of heterochromatin on centromeric repeats is initiated at modular ‘nucleation sites' by RNA interference (RNAi), ensuring the mitotic stability of centromere-bearing minichromosomes. We demonstrate that the histone deacetylases Sir2 and Clr3 and the chromodomain protein Swi6HP1 are required for H3K9me spreading from nucleation sites, thus allowing formation of extended heterochromatin domains. We discovered that RNAi and Sir2 along with Swi6HP1 operate in two independent pathways to maintain heterochromatin. Finally, we demonstrate that tethering of Sir2 is pivotal to the maintenance of heterochromatin at an ectopic locus in the absence of RNAi. These analyses reveal that Sir2, together with RNAi, are sufficient to ensure heterochromatin integrity and provide evidence for sequential establishment, spreading and maintenance steps in the assembly of centromeric heterochromatin.
Summary Genes embedded in H3 lysine 9 methylation (H3K9me)–dependent heterochromatin are transcriptionally silenced 1 – 3 . In fission yeast, Schizosaccharomyces pombe , H3K9me-mediated heterochromatin can be transmitted through cell division provided the counteracting demethylase Epe1 is absent 4 , 5 . Under certain conditions wild-type cells might utilize heterochromatin heritability to form epimutations, phenotypes mediated by unstable silencing rather than DNA changes 6 , 7 . Here we show that resistant heterochromatin-dependent epimutants arise in threshold levels of caffeine. Unstable resistant isolates exhibit distinct heterochromatin islands, which reduce expression of underlying genes, some of which confer resistance when mutated. Targeting synthetic heterochromatin to implicated loci confirms that resistance results from heterochromatin-mediated silencing. Our analyses reveal that epigenetic processes promote phenotypic plasticity, allowing wild-type cells to adapt to non-favorable environments without altering their genotype. In some isolates, subsequent or co-occurring gene amplification events augment resistance. Caffeine impacts two anti-silencing factors: Epe1 levels are downregulated, reducing its chromatin association; and Mst2 histone acetyltransferase expression switches to a shortened isoform. Thus, heterochromatin-dependent epimutant formation provides a bet-hedging strategy that allows cells to remain genetically wild-type but adapt transiently to external insults. Unstable caffeine-resistant isolates show cross-resistance to antifungal agents, suggesting that related heterochromatin-dependent processes may contribute to antifungal resistance in plant and human pathogenic fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.