We report here on a novel methodology in detecting Mycobacterium bovis (M. bovis) infection in cattle, based on identifying unique volatile organic compounds (VOCs) or a VOC profile in the breath of cattle. The study was conducted on an M. bovis-infected dairy located in southern Colorado, USA, and on two tuberculosis-free dairies from northern Colorado examined as negative controls. Gaschromatography/mass-spectrometry analysis revealed the presence of 2 VOCs associated with M. bovis infection and 2 other VOCs associated with the healthy state in the exhaled breath of M. bovis-infected and not infected animals, yielding distinctly different VOC patterns for the two study groups. Based on these results, a nanotechnology-based array of sensors was then tailored for detection of M. bovis-infected cattle via breath. Our system successfully identified all M. bovis-infected animals, while 21% of the not infected animals were classified as M. bovis-infected. This technique could form the basis for a real-time cattle monitoring system that allows efficient and non-invasive screening for new M. bovis infections on dairy farms.
The One Health initiative is a global effort fostering interdisciplinary collaborations to address challenges in human, animal, and environmental health. While One Health has received considerable press, its benefits remain unclear because its effects have not been quantitatively described. We systematically surveyed the published literature and used social network analysis to measure interdisciplinarity in One Health studies constructing dynamic pathogen transmission models. The number of publications fulfilling our search criteria increased by 14.6% per year, which is faster than growth rates for life sciences as a whole and for most biology subdisciplines. Surveyed publications clustered into three communities: one used by ecologists, one used by veterinarians, and a third diverse-authorship community used by population biologists, mathematicians, epidemiologists, and experts in human health. Overlap between these communities increased through time in terms of author number, diversity of co-author affiliations, and diversity of citations. However, communities continue to differ in the systems studied, questions asked, and methods employed. While the infectious disease research community has made significant progress toward integrating its participating disciplines, some segregation—especially along the veterinary/ecological research interface—remains.
We investigated the efficacy of oral and parenteral Mycobacterium bovis bacille Calmette-Guerin Danish strain 1331 (BCG) in its ability to protect white-tailed deer (Odocoileus virginianus) against disease caused by M. bovis infection. Twenty-two white-tailed deer were divided into four groups. One group (n=5) received 10(9) colony-forming units (cfu) BCG via a lipid-formulated oral bait; one group (n=5) received 10(9) cfu BCG in culture directly to the oropharynx, one group (n=6) was vaccinated with 10(6) cfu BCG subcutaneously, and one group served as a control and received culture media directly to the oropharynx (n=6). All animals were challenged 3 mo after vaccination. Five months postchallenge the animals were examined for lesions. Results indicate that both oral forms of BCG and parenterally administered BCG offered significant protection against M. bovis challenge as compared to controls. This study suggests that oral BCG vaccination may be a feasible means of controlling bovine tuberculosis in wild white-tailed deer populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.