The CO(2) sorption and polymer swelling of hydroxytelechelic polybutadiene (HTPB) and poly(ethylene glycol) (PEG) have been investigated as a function of temperature and CO(2) pressure by combining in situ near-infrared spectroscopy with molecular modeling. The results reported here for the PEG-CO(2) system are in a very good agreement with literature data hence validating our experimental procedure. It has been found that CO(2) sorption and swelling effect is more important for PEG than for HTPB. For both polymers, an increase of temperature leads to a strong decrease of both the CO(2) sorption and swelling. In order to identify at a molecular level the nature and strength of intermolecular interaction occurring between CO(2) and the polymers, ab initio calculations have been performed on model structures, representative of the main functional group of the polymer, and their complex with CO(2). Trans-3-hexene (3-Hex), propyl methyl ether (PME) and methoxytrimethylsilane (MTMS) have been selected to mimic the functional groups of HTPB, PEG and polydimethyl siloxane (PDMS), respectively. The last system has been chosen since previous works on the swelling of PDMS by high pressure CO(2) have revealed the high ability of CO(2) to swell both uncrosslinked and crosslinked PDMS. The calculated stabilization energies of the MTMS-CO(2), PME-CO(2), and 3-Hex-CO(2) dimers indicate that CO(2) interacts specifically with the three moieties through a Lewis acid-Lewis base type of interaction with the energies displaying the following order: E(MTMS-CO(2)) = -3.59 > E(PME-CO(2)) = -3.43 > E(3-Hex-CO(2)) = -2.5 kcal/mol. Since the solubility of CO(2) in the corresponding homopolymers follows the same order, it is evidenced that the stronger the interaction between CO(2) and the polymer, the higher the CO(2) sorption. Therefore, even if one cannot exclude the influence of free volume and chain flexibility of the polymer, it appears that the solubility of CO(2) in the polymer is predominantly governed by the interaction between CO(2) and the polymer. Although the same trend is observed for the swelling of the polymer as a function of the CO(2) pressure, we have found that for a given value of CO(2) sorption, the swelling of the polymer depends on its nature, meaning that the swelling is not only governed by the CO(2)-polymer interaction but also by other intrinsic properties of the polymer.
This study presents the development of an improved technique for viscosity measurements under high pressure. The apparatus is based on the principle of the falling ball viscometer, implemented in a highpressure autoclave fitted with visualisation windows. The originality here is that the balls fall through a tube open at both ends with a diameter slightly greater than that of the balls, allowing a simplified modelling and numerical simulation. A numerical approach has been used for viscosity determination. Calculations have been made with COMSOL Multiphysics ® with the laminar Navier-Stokes model for Newtonian mixtures. It includes the specific hydrodynamic effects without the need for a calibration fluid. However, validation experiments were carried out at atmospheric pressure with dimethylsulfoxide (DMSO) at 298, 308 and 318 K and with cocoa butter at 313 and 353 K, with values of viscosity in the range from 1.4 to 45.4 mPa s. Comparative measurements with literature data have been conducted with cocoa butter saturated with carbon dioxide at 313 and 353 K and for pressures ranging from 0.1 to 25 MPa. At 313 K, viscosity varies from 45.4 mPa s to 3.1 mPa s while at 353 K it varies from 12.4 to 1.9 mPa s. For both isotherms tested, within the range 0-15 MPa, the higher the CO 2 dissolution in the cocoa butter, the lower the viscosity. However, this decrease in viscosity is more pronounced at the lowest temperature. Above 15 MPa the CO 2 dissolution effect on viscosity becomes insignificant, i.e. within the experimental error, due to a counter effect linked with the high hydrostatic pressure. Furthermore, the limits of use of this method have been determined. This technique is revealed as reliable and can therefore be used with other binary systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.