Alpha-synuclein (aSyn) is considered a major culprit in Parkinson's disease (PD) pathophysiology. However, the precise molecular function of the protein remains elusive. Recent evidence suggests that aSyn may play a role on transcription regulation, possibly by modulating the acetylation status of histones. Our study aimed at evaluating the impact of wild-type (WT) and mutant A30P aSyn on gene expression, in a dopaminergic neuronal cell model, and decipher potential mechanisms underlying aSyn-mediated transcriptional deregulation. We performed gene expression analysis using RNA-sequencing in Lund Human Mesencephalic (LUHMES) cells expressing endogenous (control) or increased levels of WT or A30P aSyn. Compared to control cells, cells expressing both aSyn variants exhibited robust changes in the expression of several genes, including downregulation of major genes involved in DNA repair. WT aSyn, unlike A30P aSyn, promoted DNA damage and increased levels of phosphorylated p53. In dopaminergic neuronal cells, increased aSyn expression led to reduced levels of acetylated histone 3. Importantly, treatment with sodium butyrate, a histone deacetylase inhibitor (HDACi), rescued WT aSyn-induced DNA damage, possibly via upregulation of genes involved in DNA repair. Overall, our findings provide novel and compelling insight into the mechanisms associated with aSyn neurotoxicity in dopaminergic cells, which could be ameliorated with an HDACi. Future studies will be crucial to further validate these findings and to define novel possible targets for intervention in PD.
We have assessed the impact of α-synuclein overexpression on the differentiation potential and phenotypic signatures of two neural-committed induced pluripotent stem cell lines derived from a Parkinson's disease patient with a triplication of the human SNCA genomic locus. In parallel, comparative studies were performed on two control lines derived from healthy individuals and lines generated from the patient iPS-derived neuroprogenitor lines infected with a lentivirus incorporating a small hairpin RNA to knock down the SNCA mRNA. The SNCA triplication lines exhibited a reduced capacity to differentiate into dopaminergic or GABAergic neurons and decreased neurite outgrowth and lower neuronal activity compared with control cultures. This delayed maturation phenotype was confirmed by gene expression profiling, which revealed a significant reduction in mRNA for genes implicated in neuronal differentiation such as delta-like homolog 1 (DLK1), gamma-aminobutyric acid type B receptor subunit 2 (GABABR2), nuclear receptor related 1 protein (NURR1), G-protein-regulated inward-rectifier potassium channel 2 (GIRK-2) and tyrosine hydroxylase (TH). The differentiated patient cells also demonstrated increased autophagic flux when stressed with chloroquine. We conclude that a two-fold overexpression of α-synuclein caused by a triplication of the SNCA gene is sufficient to impair the differentiation of neuronal progenitor cells, a finding with implications for adult neurogenesis and Parkinson's disease progression, particularly in the context of bioenergetic dysfunction.
Sirtuin deacetylases regulate diverse cellular pathways and influence disease processes. Our previous studies identified the brain-enriched sirtuin-2 (SIRT2) deacetylase as a potential drug target to counteract neurodegeneration. In the present study, we characterize SIRT2 inhibition activity of the brain-permeable compound AK7 and examine the efficacy of this small molecule in models of Parkinson’s disease, amyotrophic lateral sclerosis and cerebral ischemia. Our results demonstrate that AK7 is neuroprotective in models of Parkinson’s disease; it ameliorates alpha-synuclein toxicity in vitro and prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamine depletion and dopaminergic neuron loss in vivo. The compound does not show beneficial effects in mouse models of amyotrophic lateral sclerosis and cerebral ischemia. These findings underscore the specificity of protective effects observed here in models of Parkinson’s disease, and previously in Huntington’s disease, and support the development of SIRT2 inhibitors as potential therapeutics for the two neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.