A life cycle assessment (LCA) was carried out on three separate drinking water production options-a groundwater treatment plant (GWTP), surface water treatment plant and seawater desalination plant (electrodialysis) in order to calculate the carbon footprint associated with each process and to identify the areas of production with high levels of GHG emissions in order to develop strategies for reducing their carbon footprint. The results obtained from the LCA show that the highest GHG emissions are from the seawater desalination plant via electrodialysis (ED) where the GHG emissions were 2.46 kg CO 2 equivalent (eq). By comparison, the GWTP has the lowest carbon footprint emitting some 0.38 kg CO 2 eq for water delivery to households. The GHG emission contribution of electricity generation for the GWTP, surface water treatment plant and seawater ED plants was 95, 82 and 98 %, respectively. Furthermore, the GHG emissions associated with this production process can be further reduced by including renewable energy power generation in its operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.