Image interpolation is often implemented using one of two methods: optical flow or convolutional neural networks. These methods are typically pixel-based; they do not work well on objects between images far apart. Because they either rely on a simple frame average or pixel motion, they do not have the required knowledge of the semantic structure of the data. In this paper, we propose a method for image interpolation based on latent representations. We use a simple network structure based on a variational autoencoder and an adjustable hyperparameter that imposes the latent space distribution to generate accurate interpolation. To visualize the effects of the proposed approach, we evaluate a synthetic dataset. We demonstrate that our method outperforms both pixel-based methods and a conventional variational autoencoder, with particular improvements in nonsuccessive images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.