Many type II restriction endonucleases require binding of two copies of a recognition site for efficient DNA cleavage. Simultaneous interaction of the enzyme with two DNA sites results in DNA loop formation. It was demonstrated with the tethered particle motion technique that such looping is a dynamic process where a DNA loop is repeatedly formed and disrupted. Here we use a better and in the context of protein-induced DNA looping virtually unexploited strategy of single-molecule Förster resonance energy transfer of surface immobilized biomolecules to quantitatively study the dynamics of Ecl18kI endonuclease-induced DNA looping and determine the rate constants of loop formation and disruption. We show that two DNA-bound Ecl18kI dimers efficiently form a bridging tetramer looping out intervening DNA with a rate that is only a few orders of magnitude lower than the diffusion limited rate. On the other hand, the existence of Ecl18kI tetramer is only transient, and the loop is rapidly disrupted within about 1 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.